Tag Archives: volume of revolution about a slanted line

Volume of Rotation About a Slanting Line

Given the area in the first quadrant bounded by x^2=12y, the line y=3 and the y-axis. What is the volume generated when this area is rotated about the line 2x-y+4=0?

Rotate the green region about the line y=2x+4

We can split the solid into shells.

    \begin{equation*}V=2\pi r dx dy\end{equation}

Where r is the distance from each (x,y) point in the region to the line 2x-y+4=0, dx is the width, and dy is the height.

The distance between a point and a line is

    \begin{equation*} d=\frac{Ax+By+C=0}{\sqrt{A^2+B^2}}\end{equation}

Hence, r=\frac{2x-y+4}{\sqrt{5}}

    \begin{equation*}V=2\pi\int \int \frac{2x-y+4}{\sqrt{5}} dx dy\end{equation}

Now we just need to work out the bounds.

0\le y \le 3 and 0\le x\le \sqrt{12y}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}} \int_0^3 \int_0^{\sqrt{12y}} 2x-y+4 dx dy\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}\int_0^3 x^2-yx+4x]_0^{\sqrt{12y}} dy \end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}\int_0^3 12y-\sqrt{12}y^{\frac{3}{2}+4\sqrt{12y} dy\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(6y^2-\frac{2\sqrt{12}}{5}y^{\frac{5}{2}}+\frac{8\sqrt{12}}{3}y^{\frac{3}{2}}]_0^3\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(54-\frac{2\sqrt{12}}{5}(9\sqrt{3})+\frac{8\sqrt{12}}{3}(3\sqrt{3}))\end{equation}

    \begin{equation*}V=\frac{2\pi}{\sqrt{5}}(54-\frac{108}{5}+48)\end{equation}

    \begin{equation*}V=\frac{804\pi}{\sqrt{5}}\end{equation}

If we rationalise the denominator

    \begin{equation*}V=\frac{804\sqrt{5}\pi}{25}\end{equation}

Leave a Comment

Filed under Integration, Volume of Revolution