Tag Archives: logistic growth

Deriving the Logistic Growth Equation

The logistic differential equation

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

where r is the growth parameter and k is the carrying capacity.

And the maximum rate of increase happens when P=\frac{k}{2}

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

    \begin{equation*}\frac{dP}{P(k-P)}=r dt{\end{equation}

    \begin{equation*}\int \frac{dP}{P(k-P)}=\int r dt{\end{equation}

I am going to separate the denominator on the left hand side

\frac{1}{P(k-P)}=\frac{A}{P}+\frac{B}{k-P}
Hence,
\frac{1}{P(k-P)}=\frac{A(k-P)+BP}{P(k-P)}
1=A(k-P)+BP
When P=0,
1=Ak\Rightarrow A=\frac{1}{k}
When P=k,
1=BK\Rightarrow B=\frac{1}{k}

So our equation is,

    \begin{equation*}\int \frac{\frac{1}{k}}{P}+\frac{\frac{1}{k}}{k-P} dP=\int r dt\end{equation}

    \begin{equation*}\frac{1}{k}\int \frac{1}{P}+\frac{1}{k-P} dP=\int r dt\end{equation}

    \begin{equation*}\int \frac{1}{P}+\frac{1}{k-P} dP=\int kr dt\end{equation}

    \begin{equation*}ln\lvert{P}\rvert-ln\lvert{k-P}\rvert=krt+c\end{equation}

    \begin{equation*}ln\lvert{\frac{P}{k-P}\rvert=krt+c\end{equation}

    \begin{equation*}\frac{P}{k-P}=e^{krt+c}\end{equation}

    \begin{equation*}\frac{P}{k-P}=e^{krt}e^{c} \end{equation}

When t=0, P=P_0,

    \begin{equation*}\frac{P_0}{k-P_0}=e^{c} \end{equation}

The equation is now

    \begin{equation*}\frac{P}{k-P}=\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P=\frac{P_0}{k-P_0}e^{krt}(k-P)\end{equation}

    \begin{equation*}P=k\frac{P_0}{k-P_0}e^{krt}-P\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P+P\frac{P_0}{k-P_0}e^{krt}=k\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P(1+\frac{P_0}{k-P_0}e^{krt})=k\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P=\frac{k\frac{P_0}{k-P_0}e^{krt}}{1+\frac{P_0}{k-P_0}e^{krt}}\end{equation}

    \begin{equation*}P=\frac{k\frac{P_0}{k-P_0}e^{krt}}{\frac{k-P_0+P_0e^{krt}}{k-P_0}}\end{equation}

    \begin{equation*}P=\frac{kP_0e^{rkt}}{k-P_0+P_0e^{rkt}}\end{equation}

Divide by e^{rkt}

    \begin{equation*}P=\frac{kP_0}{(k-P_0)e^{-rkt}+P_0}\end{equation}

    \begin{equation*}}\frac{dP}{dt}=rP(k-P)\Longleftrightarrow P=\frac{kP_0}{(k-P_0)e^{-rkt}+P_0}\end{equation}

Proving the Maximum Rate of Increase Happens When P=\frac{k}{2}

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=r\frac{dP}{dt}(k-P)+rP(-\frac{dP}{dt})\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=\frac{dP}{dt}(rk-rP-rP)\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=0\end{equation}

    \begin{equation*}\frac{dP}{dt}(rk-rP-rP)=0\end{equation}

    \begin{equation*}r\frac{dP}{dt}(k-2P)=0\end{equation}

    \begin{equation*}\frac{dP}{dt}(k-2P)=0\end{equation}

    \begin{equation*}rP(k-P)(k-2P)=0\end{equation}

Hence P=k or P=\frac{k}{2}

(1)   \begin{equation*}\frac{d^3P}{dt^3}=\frac{dP^2}{dt^2}(rk-2rP)+\frac{dP}{dt}(-2\frac{dP}{dt})\end{equation*}

Substitute P=k into equation 1

    \begin{equation*}\frac{d^3P}{dt^3}=rk(k-k)(rk-2rk)(rk-2rk)-2(rk(k-k))^2=0\end{equation}

Hence, not a maximum.

Substitute P=\frac{k}{2} into equation 1

    \begin{equation*}\frac{d^3P}{dt^3}=rk(k-\frac{k}{2})(rk-2r\frac{k}{2})(rk-2r\frac{k}{2})-2(rk(k-\frac{k}{2}))^2=0\end{equation}

    \begin{equation*}\frac{d^3P}{dt^3}=-2(rk^2-\frac{rk^2}{2})^2\end{equation}

    \begin{equation*}\frac{d^3P}{dt^3}=-2\frac{r^2k^4}{4}\end{equation}

-2\frac{r^2k^4}{4}\le 0 For all values of P, r and k.

Hence maximum when P=\frac{k}{2}

We will look at a worked example in the next post.

Leave a Comment

Filed under Differential Equations, Differentiation, Implicit, Logistic Growth, Optimisation, Product Rule, Uncategorized, Year 12 Specialist Mathematics

The Logistic Equation

My year 12 Specialist students are working on logistic growth at the moment. An example might be helpful.

A new viral disease was found to spread according to the equation \frac{dN}{dt}=kn(M-N), where M is the susceptible population, N is the number of people infected at time t months and k=1.5\times 10^{-9}. In March 2010, it was thought only 100 people out of a population of 18 million were infected. Use the logistic model to find the number infected in:

(a) March 2011

(b) June 2012

(c) January 2017

Specialist 12 – Nelson Senior Maths

\frac{dN}{dt}=kN(M-N)

\frac{dN}{dt}=(1.5\times10^{-9})N(18\times10^{6}-N)

\frac{dN}{N(18\times10^{6}-N)}=1.5\times10^{-9}dt

Use partial fractions to separate the denominator \frac{dN}{N(18\times10^{6}-N)}

\frac{1}{N(18\times10^{6}-N)}=\frac{A}{N}+\frac{B}{18\times10^{6}-N}

1=A(18\times10^{6}-N)+BN

When N=0

1=A(18\times10^{6})

A=\frac{1}{18\times10^{6}}

When N=18\times10^{6}

1=B(18\times10^{6})

B=\frac{1}{18\times10^{6}}

\frac{1}{18\times10^{6}}(\frac{1}{N}+\frac{1}{(18\times10^{6}-N)}dN)=1.5\times10^{-9}dt

\int\frac{1}{N}+\frac{1}{(18\times10^{6}-N)}dN=\int27\times10^{-3}dt

\ln|N|-\ln|18\times10^{6}-N|=(27\times10^{-3})t+c

\ln|\frac{N}{18\times10^{6}-N}|=(27\times10^{-3})t+c

\frac{N}{18\times10^{6}-N}=e^{(27\times10^{-3})t+c}

Let A=e^{c} and rearrange to make N the subject.

N=\frac{(18\times10^{6})Ae^{(27\times10^{-3})t}}{1+Ae^{(27\times10^{-3})t}}

Divide by Ae^{(27\times10^{-3})t}

N=\frac{(18\times10^{6})}{\frac{1}{A}e^{-(27\times10^{-3})t}+1}

Initially 100 people were infected.

100=\frac{(18\times10^{6})}{\frac{1}{A}+1}

A=\frac{1}{179999}

N=\frac{(18\times10^{6})}{179999e^{-(27\times10^{-3})t}+1}

(a) t=12, N=138.3, hence 138

(b) t=27, N=207.3, hence 207

(c) t=82, N=915.2, hence 915.

It is not necessary to solve the differential equation, you can use the formula

\frac{dP}{dt}=rP(k-P)\leftrightarrowP=\frac{kP_0}{P_0+(k-P_0)e^{-rkt}}

This formula is on the Year 12 Mathematics Specialist formula sheet for Western Australia.

For our question,

\frac{dN}{dt}=(1.5\times10^{-9})N(18\times10^6-N)

So, P=\frac{18\times10^{6}\times100}{100+(18\times10^6-100)e^{-(1.5\times10^{-9})(18\times10^6)t}}

And you can substitute values for t.

Leave a Comment

Filed under Differential Equations, Integration, Logistic Growth