Tag Archives: index laws

Interesting Equation

I think this one is doing the rounds, I first saw it here.

    \begin{equation*}2^x3^{x^2}=6\end{equation}

x=1 is the obvious answer, 2^1\times 3^1=6, but are there more answers?

This was my approach

    \begin{equation*}ln(2^x3^{x^2})=ln(6)\end{equation}

    \begin{equation*}ln(2^x)+ln(3^{x^2})=ln(6)\end{equation}

    \begin{equation*}xln(2)+x^2ln(3)-ln(6)=0\end{equation}

    \begin{equation*}ln(3)x^2+ln(2)x-ln(6)=0\end{equation}

A quadratic equation.

Hence,

    \begin{equation*}x=\frac{-ln(2)\pm\sqrt{(ln(2))^2-4(ln(3))(ln(6))}}{2ln(3)}\end{equation}

I then used my calculator

Hence x=1 0r x=-1.631

Leave a Comment

Filed under Algebra, Index Laws, Interesting Mathematics, Quadratics, Solving