Category Archives: Year 12 Mathematical Methods

Differentiating f(x)=e^x

We are going to differentiate f(x)=e^x from first principals.

Remember the definition of a derivative is

(1)   \begin{equation*}f'(x)=\lim_{\limits{h\to 0}}\frac{f(x+h)-f(x)}{h}\end{equation*}

If f(x)=e^x, then

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^{x+h}-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x\times e^h-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x(e^h-1)}{h}\end{equation}

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

Let’s think about \lim_{\limits{h \to 0}}\frac{e^h-1}{h}

Remember e is defined as \lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

(2)   \begin{equation*}\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation*}

Let y=e^h-1, as h \to 0, e^h-1 \to 1-1=0 hence y \to 0

If y=e^h-1, then h=ln(y+1)

(3)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{y}{ln(y+1)}\end{equation*}

We are going to rewrite the equation 3 as

(4)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{\frac{1}{ln(y+1)}}{y}\end{equation*}

And then we can write equation 4 as

(5)   \begin{equation*}{\lim_{\limits{y \to 0}}{\frac{1}{\frac{1}{y}ln(y+1)}\end{equation*}

Using log laws we can write equation 5 as

(6)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{1}{ln(y+1)^{\frac{1}{y}}}\end{equation*}

Let y=\frac{1}{n}

As y \to 0, n \to \infty

equation 6 becomes

(7)   \begin{equation*}\lim_{\limits{n \to \infty}}\frac{1}{ln(\frac{1}{n}+1)^n}\end{equation*}

We can move the limit to inside the natural log

(8)   \begin{equation*}\frac{1}{ln(\lim_{\limits{n \to \infty}}(\frac{1}{n}+1)^n)}\end{equation*}

And we know from the definition of e that e=\lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

Hence, equation 8 is

(9)   \begin{equation*}\frac{1}{ln(e)}=1\end{equation*}

Back to our derivative

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

We know that \lim_{\limits{h \to 0}}{\frac{e^h-1}{h}=1 hence

    \begin{equation*}f'(x)=e^x\end{equation}

Leave a Comment

Filed under Calculus, Differentiation, Year 12 Mathematical Methods

Differentiating the Tangent Function

Remember tan(x)=\frac{sin(x)}{cos(x)}.

I use the quotient rule to differentiate f(x)=tan(x).

(1)   \begin{equation*}\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\end{equation*}

If h(x)=tan(x)=\frac{sin(x)}{cos(x)} then from equation 1

(2)   \begin{equation*}h'(x)=\frac{cos(x)cos(x)-(-sin(x)sin(x))}{[cos(x)]^2}\end{equation*}

(3)   \begin{equation*}h'(x)=\frac{cos^2(x)+sin^2(x)}{cos^2(x)}\end{equation*}

Remember the Pythagorean identity

(4)   \begin{equation*}sin^2(x)+cos^2(x)=1\end{equation*}

Hence

    \begin{equation*}h'(x)=\frac{1}{cos^2(x)}=sec^2(x)\end{equation}

(5)   \begin{equation*}\frac{d}{dx}tan(x)=sec^2(x)\end{equation*}

Leave a Comment

Filed under Calculus, Differentiation, Differentiation, Identities, Quotient Rule, Trigonometry, Year 12 Mathematical Methods

Differentiating Trigonometric Functions

In the last post we looked at two trig limits:

(1)   \begin{equation*}\lim_{x \to 0}\frac{sin(x)}{x}=1\end{equation*}

(2)   \begin{equation*}\lim_{x \to 0}\frac{1-cos(x)}{x}=0\end{equation*}

We are going to use these two limits to differentiate sine and cosine functions from first principals.

    \begin{equation*}f(x)=sin(x)\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x+h)-sin(x)}{h}\end{equation}

Use the trig identity

    \begin{equation*}sin(A+B)=sinAcosB+sinBcosA\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}(\frac{sin(x)(cos(h)-1)}{h}+\frac{sin(h)cos(x)}{h})\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{(cos(h)-1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{-(-cos(h)+1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=sin(x)\times 0+cos(x)\times (1)=cos(x)\end{equation}

Hence, \frac{d}{dx}sin(x)=cos(x).

Now we are going to do the same for f(x)=cos(x).

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x+h)-cos(x)}{h}\end{equation}

Use the trigonometric identity

    \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)cos(h)-sin(x)sin(h)-cos(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)(cos(h)-1)-sin(x)sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=cos(x)\lim\limits_{h \to 0}\frac{-(1-cos(h))}{h}-sin(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=cos(x)\times(0)-sin(x)\times (1)=-sin(x)\end{equation}

Hence \frac{d}{dx} cos(x)=-sin(x)

1 Comment

Filed under Calculus, Differentiation, Identities, Trigonometry, Year 12 Mathematical Methods

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods

Deriving the Quotient Rule for Differentiation

Like we did for the product rule, we are going to derive the differentiating rule for functions in the form y=\frac{f(x)}{g(x)}.

Something like, y=\frac{x^2+3x+2}{x^3-1}

Remember the first principals limit

\lim_{\limits h \to 0}\frac{f(x+h)-f(x)}{h}

If y=\frac{f(x)}{g(x)}, then

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}

Find a common denominator for the numerator (i.e. g(x+h)g(x))

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)}}{h}

To make things a bit easier I am going to multiply by \frac{1}{h} rather than having h as the denominator

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Now I am going to add and subtract f(x)g(x)

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)(g(x)+f(x)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Factorise

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))+f(x)(g(x)-g(x+h))}{g(x+h)g(x)} \times \frac{1}{h}

Change the sign in the middle

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))-f(x)(g(x+h)-g(x))}{g(x+h)g(x)} \times \frac{1}{h}

Separate the limits

y'=g(x)\lim_{\limits h \to 0}\frac{\frac{f(x+h)-f(x)}{h}}{g(x+h)g(x)}-f(x)\lim_{\limits h \to 0}\frac{\frac{g(x+h)-g(x)}{h}}{g(x+h)g(x)}

which simplifies to

y'=g(x)\frac{f'(x)}{g(x)g(x)}-f(x)\frac{g'(x)}{g(x)g(x)}

y'=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}

In words

The derivative of the top times the bottom take the derivative of the bottom times the top all over the bottom squared

Example

y=\frac{x^2+3x+2}{x^3-1}

y'=\frac{(2x+3)(x^3-1)-3x^2(x^2+3x+2)}{(x^3-1)^2}

y'\frac{2x^4-2x+3x^3-3-3x^4-9x^3-6x^2}{(x^3-1)^2}

y'=\frac{-x^4-6x^3-6x^2-2x-3}{(x^3-1)^2}

Exam questions usually specify no simplifying.

2 Comments

Filed under Calculus, Differentiation, Quotient Rule, Year 12 Mathematical Methods

Deriving the Product Rule for Differentiation

In my previous post we looked at the Chain Rule for Differentiation, this post is on the Product Rule. Differentiating a function in the form y=f(x)\times g(x).

For example, y=(3x^3+2x-1)(x^4+2x^2)

Remember differentiating from first prinicpals:

f'(x)=\lim_{\limits h \to 0} \frac{f(x+h)-f(x)}{h}

y=f(x)g(x)

\frac{dy}{dx}=\lim_{\limits h\to 0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}}

\small{  \frac{dy}{dx}=\lim_{\limits h \to 0} \frac{f(x+h)g(x+h)-g(x+h)f(x)+g(x+h)f(x)-f(x)g(x)}{h}}

By subtracting and then adding g(x+h)f(x) we haven’t changed the limit, but it means we can do some factorising.

\frac{dy}{dx}=\lim_{\limits h \to 0}\frac{g(x+h)(f(x+h)-f(x))+f(x)(g(x+h)-g(x))}{h}

\small{\frac{dy}{dx}=\lim_{\limits h \to 0}g(x+h)\lim_{\limits h \to 0}\frac{f(x+h)-f(x)}{h}+\lim_{\limits h \to 0}f(x)\lim_{\limits h \to 0}\frac{g(x+h)-g(x)}{h}}

When we evaluate the limits

\frac{dy}{dx}=g(x)f'(x)+f(x)g'(x)

Example

Find the derivative of y=(3x^3+2x-1)(x^4+2x^2)

I remember the rule in words ‘derivative of the first times the second plus the derivative of the second times the first’.

y'=(9x^2+2)(x^4+2x^2)+(4x^3+4x)(3x^3+2x-1)

y'=9x^6+18x^4+2x^4+4x^2+12x^6+8x^4-4x^3+12x^4+8x^2-4x

y'=21x^6+40x^4-4x^312x^2-4x

Most exam questions have ‘don’t simplify’, so the first line of working above would be enough.

Onto the Quotient Rule.

2 Comments

Filed under Calculus, Differentiation, Product Rule, Year 12 Mathematical Methods

Deriving the Chain Rule for Differentiation

How to differentiate something in the form y=[f(x)]^n

For example, y=(3x^2-2x+6)^5, we could expand the expression, but the Chain Rule provides a quick and easy method.

Differentiate y=[f(x)]^n

Let u=f(x), then y=u^n

We want to find \frac{dy}{dx}, but \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}

They’re not fractions, but limits of fractions, but they work like fractions.

\frac{du}{dx}=f'(x) and \frac{dy}{du}=nu^{n-1}

Therefore, \frac{dy}{dx}=f'(x)\times nu^{n-1}

Replace u with f(x)

(1)   \begin{equation*}\frac{dy}{dx}=n[f(x)]^{n-1}f'(x)\end{equation*}

What about a function in the form y=f(g(x))?

We’re going to follow the same process.

Let u=g(x), then y=f(u)

\frac{du}{dx}=g'(x) and \frac{dy}{du}=f'(u)

Therefore \frac{dy}{dx}=f'(u)g'(x)

(2)   \begin{equation*}\frac{dy}{dx}=f'(g(x))g'(x) \end{equation*}

Equations 1 and 2 are versions of the Chain Rule.

Example

Find the derivative of y=(3x^2-2x+6)^5

    \begin{equation*}\frac{dy}{dx}=5(3x^2-2x+6)^4\times (6x-2)\end{equation}

    \begin{equation*}\frac{dy}{dx}=5(6x-2)(3x^2-2x+6)^4\end{equation}

    \begin{equation*}\frac{dy}{dx}=10(3x-1)(3x^2-2x+6)\end{equation}

Next time we are going to look at the Product Rule.

1 Comment

Filed under Calculus, Chain Rule, Differentiation, Year 12 Mathematical Methods

Effect of Function Transformations on Integration

My year 12 Mathematical Methods students have questions like this

Given that f(x) is continuous everywhere and that \int_{4}^{10} f(x) dx=-10, find:

(a) \int_{4}^{10}2x +f(x) dx

(b) \int_{5}^{11} f(x-1) dx

(c) \int_{1}^{3} f(3x+1) dx

(d) \int_{-10}^{-4} -f(-x) dx

(e) \int{10}^{22} f(\frac{x-2}{2}) dx

(f) \int_{-3}^{-9} f(1-x) dx

OT Lee Mathematics Methods Textbook Ex 8.3 question 6

For the most part these questions aren’t too difficult, but the horizontal dilations cause issues.

(a) \int_{4}^{10} 2x +f(x) dx
\int_{4}^{10} 2x  dx +\int_{2}^{10} f(x) dx
(x^2]_4^{10} + (-10)
10^2-4^2-10
=74

(b) \int_{5}^{11} f(x-1) dx
=-10




(c) \int_{1}^{3} f(3x+1) dx
Let u=3x+1
\frac{du}{dx}=3
dx=\frac{du}{3}

When x=1, u=4 and when x=3, u=10
\int_{4}^10 f(u) \frac{du}{3}
=\frac{1}{3}\times (-10)
=\frac{-10}{3}

(d) \int_{-10}^{-4} -f(-x) dx
-\int_{-10}^{-4} f(-x) dx

Let u=-x
\frac{du}{dx}=-1
dx=-du

When x=-4, u=4 and when x=-10, u=10
-\int_{4}^{10} f(u) -dx
=-10

(e) \int_{10}^{22} f(\frac{x-2}{2} dx
Let u=f(\frac{x-2}{2})
\frac{du}{dx}=\frac{1}{2}
\du=2dx

When x=10, u=4 and when x=22, u=10
2\int_{4}^{10} f(u) du
=-20

(f) \int_{-3}^{-9} 2f(1-x) dx
Let u=1-x
\frac{du}{dx}=-1

When x=-3, u=4 and when x=-9, u=10
=-2\int_{4}^{10} f(u) du
=20


Split the integral
Integrate the first part.


This is a horizontal translation (one unit to the right) so the shape of the curve doesn’t change.
The integration bounds have also shifted one unit to the right.




This is a horizontal dilation and translation. The easiest method is to use a change of variable





































Once you get the hang of it, you can skip the change of variable and multiply the value of the definite integral by the scale factor of the horizontal dilation (only if the integration bounds are also changed).

Leave a Comment

Filed under Definite, Integration, Uncategorized, Year 12 Mathematical Methods

Optimisation

An optimisation question from the 2019 ATAR Mathematics Methods exam.

I always like optimisation questions. There is a nice process to follow:

  • Find the function to optimise (in terms of one variable).
  • Find the stationary points.
  • Find the nature of the stationary points.
  • Find the maximum or minimum.
(a) Volume of the cylinder V=\pi r^2h
42=2r+h
h=42-2r
\therefore V_C=\pi r^2(42-2r)
Volume of spherical decorations V_S=\frac{4}{3}\pi( r_s)^3 where r_s=\frac{r}{3}
V_S=\frac{4\pi r^3}{81}
Volume unused space V=\pi r^2(42-2r)-20(\frac{4\pi r^3}{81})
V=2\pi (21r^2-r^3-\frac{40r^3}{81})
V=2\pi (21r^2-\frac{81r^3}{81}-\frac{40r^3}{81})
V=2\pi (21r^2-\frac{121r^3}{81})

(b) V=2\pi (21r^2-\frac{121r^3}{81})
\frac{dV}{dr}=2\pi (42r-\frac{121r^2}{27})
\frac{dV}{dr}=0
0=42r-\frac{121r^2}{27}
0=r(42-\frac{121r}{27})
r=0 or r=\frac{1134}{121}=9.372

\frac{d^2V}{dr^2}=2\pi (42-\frac{242r}{27})
(\frac{d^2V}{dr^2})_{|r=9.372}=-42
\therefore r=9.372 is a maximum.

Dimensions of the vase, internal diameter=18.7cm internal height=23.3cm

(c) Maximum volume of empty space =2\pi (21r^2-\frac{121r^3}{81})=3863.08cm^3
Volume of one sphere =\frac{4}{3}\pi r^3=3448.03cm^3

There is enough unused space for one extra decoration, but it would depend on how they are packed.

Leave a Comment

Filed under Differentiation, Optimisation, Year 12 Mathematical Methods