Category Archives: Year 11 Specialist Mathematics

Vectors – Closest Approach (2D)

At 10am, object M travelling with constant velocity (20, 10) km/h is sighted at the point with position vector (-100, 100) km. At 11am object N travelling with constant velocity v=(x,y) km/h is sighted at the point with position vector (-20,-50) km respectively. Use a scalar product method to determine v given that the two objects were closest together at a distance of 40 km at 4pm.

OT Lee Mathematics Specialist Year 11

At 4pm M is at the point with position vector (-100+6\times 20, -100+6\times 10)=(20, -40)

and N is at the point with position vector (-20+5\times x, -50+5\times y)=(-20+5x, -50+5y)

We know the distance between M and N at 4pm is 40 km.

Hence,

    \begin{equation*}40^2=(20-(-20+5x))^2+(-40-(-50+5y))^2\end{equation}

    \begin{equation*}40^2=(40-5x)^2+(10-5y)^2\end{equation}

    \begin{equation*}1600=25x^2-400x+1600+25y^2-100y+100\end{equation}

(1)   \begin{equation*}0=x^2+y^2-16x-4y+4\end{equation*}

In the diagram below, I have found the position vector of N relative to M (_Nr_M) and the velocity of N relative to M (N_v_M)

We know that when _Nr_M\cdot_Nv_M=0 M and N are the closest distance apart.

    \begin{equation*}(-40+5x,-10+5y)\cdot(x-20,y-10)=0\end{equation}

    \begin{equation*}(-40+5x)(x-20)+(-10+5y)(y-10)\end{equation}

    \begin{equation*}5x^2+5y^2-140x-60y+900=0\end{equation}

(2)   \begin{equation*}x^2+y^2-28x-12y+180=0\end{equation*}

Two equations and two unknowns which we can solve simultaneously. Both equations are circles.

Equation (1) becomes

(3)   \begin{equation*}(x-8)^2+(y-2)^2=64\end{equation*}

and equation (2) becomes

(4)   \begin{equation*}(x-14)^2+(y-6)^2=52\end{equation*}

From equation (3)

    \begin{equation*}x=\sqrt{64-(y-2)^2}+8\end{equation}

We will worry about the negative version later.

Substitute for x into equation (4)

    \begin{equation*}(\sqrt{64-(y-2)^2}+8-14)^2+(y-6)^2=52\end{equation}

    \begin{equation*}(\sqrt{64-(y-2)^2}-6)^2+(y-6)^2=52\end{equation}

    \begin{equation*}64-(y-2)^2-12\sqrt{64-(y-2)^2}+36+y^2-12y+36=52\end{equation}

    \begin{equation*}136-y^2+4y-4+y^2-12y-12\sqrt{64-(y-2)^2}=52\end{equation}

    \begin{equation*}-12\sqrt{64-(y-2)^2}=-80+8y\end{equation}

    \begin{equation*}\sqrt{64-(y-2)^2}=\frac{20}{3}-\frac{2}{3}y\end{equation}

Square both sides of the equation

    \begin{equation*}64-(y-2)^2=\frac{400}{9}-\frac{80}{9}y+\frac{4}{9}y^2\end{equation}

    \begin{equation*}60-y^2+4y=\frac{400}{9}-\frac{80}{9}y+\frac{4}{9}y^2\end{equation}

    \begin{equation*}0=\frac{13}{9}y^2-\frac{116}{9}y-\frac{140}{9}\end{equation}

    \begin{equation*}0=13y^2-116y-140\end{equation}

    \begin{equation*}0=13y^2-130y+14y-140\end{equation}

    \begin{equation*}0=13y(y-10)+14(y-10)\end{equation}

    \begin{equation*}0=(y-10)(13y+14)\end{equation}

(5)   \begin{equation*}\therefore y=10, y=-\frac{14}{13}\end{equation*}

Substitute y=10 into x=\sqrt{64-(y-2)^2}+8

    \begin{equation*}x=\sqrt{64-(y-2)^2}+8\end{equation}

(6)   \begin{equation*}x=8\end{equation*}

Substitute y=-\frac{14}{13} into x

    \begin{equation*}x=\sqrt{64-(-\frac{14}{13}-2)^2}+8\end{equation}

(7)   \begin{equation*}x=\frac{200}{13}\end{equation*}

Now we need to consider the negative version of x. If you work through (like I did above) you end with the same equation for y.

Hence our two values for v are v=(8,10) or v=(\frac{200}{13},-\frac{14}{13}).

Would someone be expected to do this in an exam? I hope not, but I think its worth doing.

Leave a Comment

Filed under Closest Approach, Vectors, Year 11 Specialist Mathematics