Category Archives: Year 11 Mathematical Methods

Arithmetic Sequence

I did this question with on of my year 11 students. I think the algebra and the subscripts can be a bit tricky.

If T_m=n and T_n=m, then prove that T_{m+n}=0. Here where T_n and T_m are terms of an arithmetic sequence.
Mathematics Methods Units 1&2 – Exercise 15B Question 19

If T_m=n then,

(1)   \begin{equation*}n=a+(m-1)d\end{equation*}


And if T_n=m then,

(2)   \begin{equation*}m=a+(n-1)d\end{equation*}


Subtract equation (2) from equation (1)

    \begin{equation*}n-m=(m-1)d-((n-1)d)\end{equation*}


    \begin{equation*}n-m=md-nd\end{equation*}


(3)   \begin{equation*}n-m=d(m-n)\end{equation*}


Therefore d must equal -1
Substitute d=-1 into equation (1)

    \begin{equation*}n=a+(m-1)(-1)\end{equation*}


(4)   \begin{equation*}n=a-m+1\end{equation*}


Therefore a=n+m-1


(5)   \begin{equation*}T_{m+n}=a+(m+n-1)d\end{equation*}


Substitute a=n+m-1 and d=-1 into equation (5)

    \begin{equation*}$T_{m+n}=n+m-1+(m+n-1)(-1)$\end{equation*}


    \begin{equation*}$T_{m+n}=n+m-1-m-n+1$\end{equation*}


(6)   \begin{equation*}$T_{m+n}=0$\end{equation*}

As you can see from equation (6), T_{m+n}=0

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods