Category Archives: Year 11 Mathematical Methods

Binomial Expansion Theorem

My Year 11 Mathematics Methods students are working on the Binomial Expansion Theorem.

But before we get onto that, remember Pascal’s triangle

First 8 rows of Pascal’s triangle

Now we can use combinations to find the numbers in each row. For example, 1 4 6 4 1 is \begin{pmatrix}4\\0\end{pmatrix}=1, \begin{pmatrix}4\\1\end{pmatrix}=4, \begin{pmatrix}4\\2\end{pmatrix}=6,  \begin{pmatrix}4\\3\end{pmatrix}=4, \begin{pmatrix}4\\4\end{pmatrix}=1

ExpressionExpansionCo-efficients
(x+y)^2x^2+2xy+y^21, 2, 1
(x+y)^3x^3+3x^2y+3xy^2+y^31, 3, 3, 1
(x+y)^4x^4+4x^3y+6x^2y^2+4xy^3+y^41, 4, 6, 4, 1

As you can see, the coefficients are the row of pascal’s triangle corresponding to the power. So (x+y)^6 would have co-efficients from the sixth row of the table 1, 6, 15, 20, 15, 6, 1.

To generalise

(x+y)^n=\begin{pmatrix}n\\0\end{pmatrix}x^ny^0+\begin{pmatrix}n\\1\end{pmatrix}x^{n-1}y^1+\begin{pmatrix}n\\2\end{pmatrix}x^{n-2}y^2+ ...+\begin{pmatrix}n\\n-1\end{pmatrix}x^1{y^{n-1}+\begin{pmatrix}n\\n\end{pmatrix}x^0y^n

Which we can condense to

(x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i

Worked Examples

(1) Expand (2x-3)^4

(2x-3)^4=\begin{pmatrix}4\\0\end{pmatrix}(2x)^4(-3)^0+\begin{pmatrix}4\\1\end{pmatrix}(2x)^3(-3)^1+\begin{pmatrix}4\\2\end{pmatrix}(2x)^2(-3)^2+\begin{pmatrix}4\\3\end{pmatrix}(2x)^1(-3)^3+\begin{pmatrix}4\\4\end{pmatrix}(2x)^0(-3)^4
(2x-3)^4=16x^4-96x^3+216x^2-216x+81

(2) Find the co-efficient of the x^3 term in the expansion of (2-5x)^5.

Remember (x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i, the x^3 is when i=3
\begin{pmatrix}5\\3\end{pmatrix}(2)^2(-5)^3=10\times 2\times -125=-5000

(3) Find the constant term in the expansion of (x^2+\frac{3}{x^4})^6

We need to find the term where the x‘s cancel out. Each term is \begin{pmatrix}6\\i\end{pmatrix}(x^2)^{6-i}(\frac{3}{x^4})^i.
\begin{pmatrix}6\\i\end{pmatrix}(x^{12-2i})(3^ix^{-4i}).
We need 12-2i-4i=0, hence i=2
Therefore, the co-efficient is \begin{pmatrix}6\\2\end{pmatrix}\times3^2=135

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Counting Techniques, Year 11 Mathematical Methods

Arithmetic Sequence

I did this question with on of my year 11 students. I think the algebra and the subscripts can be a bit tricky.

If T_m=n and T_n=m, then prove that T_{m+n}=0. Here where T_n and T_m are terms of an arithmetic sequence.
Mathematics Methods Units 1&2 – Exercise 15B Question 19

If T_m=n then,

(1)   \begin{equation*}n=a+(m-1)d\end{equation*}


And if T_n=m then,

(2)   \begin{equation*}m=a+(n-1)d\end{equation*}


Subtract equation (2) from equation (1)

    \begin{equation*}n-m=(m-1)d-((n-1)d)\end{equation*}


    \begin{equation*}n-m=md-nd\end{equation*}


(3)   \begin{equation*}n-m=d(m-n)\end{equation*}


Therefore d must equal -1
Substitute d=-1 into equation (1)

    \begin{equation*}n=a+(m-1)(-1)\end{equation*}


(4)   \begin{equation*}n=a-m+1\end{equation*}


Therefore a=n+m-1


(5)   \begin{equation*}T_{m+n}=a+(m+n-1)d\end{equation*}


Substitute a=n+m-1 and d=-1 into equation (5)

    \begin{equation*}$T_{m+n}=n+m-1+(m+n-1)(-1)$\end{equation*}


    \begin{equation*}$T_{m+n}=n+m-1-m-n+1$\end{equation*}


(6)   \begin{equation*}$T_{m+n}=0$\end{equation*}

As you can see from equation (6), T_{m+n}=0

Leave a Comment

Filed under Algebra, Arithmetic, Sequences, Year 11 Mathematical Methods