Category Archives: Non-Right Trigonometry

Area/Geometry Problem

This problem is from The Geometry Forum Problem of the Week June 1996

In triangle ABC, AC=18 and D is the point on AC for which AD=5. Perpendiculars drawn from D to AB and CB have lengths of 4 and 5 respectively. What is the area of triangle ABC?

I put together a diagram (in Geogebra)

Add points P and Q

Triangle APD and triangle DQC are right angled. Using pythagoras, AP=3 and QC=12

BQDP is a cyclic quadrilateral and BD is the diameter. I am not sure if this is useful, but it is good to notice.

    \begin{equation*}sin(A+B+C)=sin(180)=0\end{equation}

    \begin{equation*}sin((A+C)+B)=sin(A+C)cosB+sinBcos(A+C)=0\end{equation}

    \begin{equation*}cosB(sinAcosC+sinCcosA)+sinB(cosAcosC-sinAsinC)=0\end{equation}

    \begin{equation*}cosB(\frac{4}{5}\times\frac{12}{13}+\frac{5}{13}\times\frac{3}{5})+sinB(\frac{3}{5}\times\frac{12}{13}-\frac{4}{5}\times\frac{5}{13})=0\end{equation}

    \begin{equation*}cosB(\frac{48}{65}+\frac{15}{65})+sinB(\frac{36}{65}-\frac{20}{65})=0\end{equation}

    \begin{equation*}\frac{63}{65}cosB+\frac{16}{65}sinB=0\end{equation}

    \begin{equation*}63cosB+16sinB=0\end{equation}

    \begin{equation*}63+16tanB=0\end{equation}

    \begin{equation*}tanB=\frac{-63}{16}\end{equation}

If tanB=\frac{-63}{16} then sinB=\frac{63}{65}

Now,

    \begin{equation*}\frac{y+12}{sinA}=\frac{18}{sinB}\end{equation}

    \begin{equation*}y+12=\frac{4}{5}(18)\frac{65}{63}\end{equation}

    \begin{equation*}y+12=\frac{104}{7}\end{equation}

Hence the Area is

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})sinC\end{equation}

    \begin{equation*}A=\frac{1}{2}(18)(\frac{104}{7})\frac{5}{13}\end{equation}

    \begin{equation*}A=\frac{360}{7}=51.43\end{equation}

Leave a Comment

Filed under Area, Finding an area, Geometry, Identities, Non-Right Trigonometry, Pythagoras, Trigonometry

Area of Regular Polygons

Finding the area of a regular polygon when you know the side length

Find the area of an n-sided regular polygon if you know the side length, l.

An octagon for a visual reference

Find the h of the triangle in terms of l and theta.

tan(\theta)=\frac{\frac{l}{2}}{h}

h=\frac{l}{2tan(\theta)}

Remember the area of a triangle is A=\frac{1}{2}bh

Hence, A=\frac{1}{2} l \times \frac{l}{2tan(\theta)}=\frac{l^2}{4tan(\theta)}

And \theta=\frac{360}{2n}=\frac{180}{n}

Therefore A=\frac{l^2}{4tan(\frac{180}{n})}

There are n triangles in an n-sided polygon

(1)   \begin{equation*}A=\frac{nl^2}{4tan(\frac{180}{n})}\end{equation*}

Find the area of a hexagon with side length 10cm.
A=\frac{6\times10^2}{4tan(\frac{180}{6})}
A=\frac{600}{4(\frac{1}{\sqrt{3}})}
A=150\sqrt{3} cm^2

Finding the area of a polygon if you know the inradius or the apothem

The apothem and the inradius are the same. It is the radius of the incircle.

Find the area of the triangle in terms of a and theta.

tan(\theta)=\frac{\frac{l}{2}}{a}

l=2atan(\theta)

A=\frac{1}{2}bh

A=\frac{1}{2}2atan(\theta)a=a^2tan(\theta)

And \theta=\frac{180}{n}

Hence for an n-sided polygon

(2)   \begin{equation*}A=na^2tan(\frac{180}{n})\end{equation*}

Find the area of a regular pentagon with apothem 4.5cm
A=5\times 4.5^2tan(\frac{180}{5})
A=73.56cm^2

Finding the area of a regular polygon given the circumradius

The circumradius is the radius of the circumscribed circle (R in the diagram above)

Remember the area of triangle formula

A=\frac{1}{2}absin(\theta)

A=\frac{1}{2}R^2sin(\theta)

\theta=\frac{360}{n}

Hence, A=\frac{1}{2}R^2sin(\frac{360}{n})

Hence, for an n-sided polygon

(3)   \begin{equation*}A=\frac{nR^2sin(\frac{360}{n})}{2}\end{equation*}

Find the area of a regular octagon inscribed in a circle of radius 10cm.
A=\frac{8\times 10^2sin(45)}{2}
A=200\sqrt{2}cm^2

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Non-Right Trigonometry, Regular Polygons, Right Trigonometry, Year 11 Mathematical Methods

Non-Right Trigonometry Problem

I worked on this question with one of my students (I don’t know where it is from).


Mike leaves the rose bush he was examining and walks 35m in the direction
S20^{\circ}W towards a pond.
From there he walks 70m towards a rotunda. Mike is now 100m from the rose bush.
Find the bearing of the rotunda from the pond.

Let’s try to draw a diagram

Because we don’t the direction Mike walked from the pond, I have drawn a circle with radius 70m centred at the pond.

We know Mike is now 100m from the rose bush. As we don’t know the direction, I have drawn another circle with radius 100m centred at the rose bush. Where the two circles intersect are the possible locations of the rotunda.

First Position



Use the cosine rule to find the angle
cos\theta=\frac{b^2+c^2-a^2}{2bc}
cos\theta=\frac{70^2+35^2-100^2}{2(70)(35)}
\theta=cos^{-1}(\frac{-3875}{5250})
\theta=137.6^{\circ}




Using the fact that alternate angles in parallel lines are congruent, we can see
that the bearing from the pond to the rotunda is
360-(137.6-20)=242.2^{\circ} T

Second Position


It is the same triangle, so
\theta=137.6^{\circ}.

This time the bearing is
20+137.6=157.6^{\circ}T

Hence, the two possible bearings of the rotunda from the pond are 242.2^{\circ}T or 157.6^{\circ}T.

Leave a Comment

Filed under Bearings, Non-Right Trigonometry, Trigonometry

Proof of the Sine Rule

As I have done a cosine rule proof, I thought I should also do a sine rule proof.

\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}\textnormal{ or }\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}

From the above diagram, we can find h in two ways.

sinC=\frac{h}{a}

(1)   \begin{equation*}h=asinC\end{equation*}

sinA=\frac{h}{c}

(2)   \begin{equation*}h=csinA\end{equation*}

Set equation 1 equal to equation 2

asinC=csinA

\frac{a}{sinA}=\frac{c}{sinC} or \frac{sinC}{c}=\frac{sinA}{a}

We could have put the altitude of the triangle from vertex A

Following the same process as above

sinC=\frac{h}{b}

(3)   \begin{equation*}h=bsinC\end{equation*}

sinB=\frac{h}{c}

(4)   \begin{equation*}h=csinB\end{equation*}

Set equation 3 equal to equation 4.

bsinC=csinB

\frac{b}{sinB}=\frac{c}{sinC}

Now \frac{c}{sinC}=\frac{a}{sinA} therefore

\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA} or \frac{sinB}{b}=\frac{sinC}{c}=\frac{sinA}{a}

Leave a Comment

Filed under Non-Right Trigonometry, Right Trigonometry, Trigonometry

Proof of the cosine rule

    \[a^2=b^2+c^2-2bccos(A)\]

From the diagram above

    \[h^2=a^2-(b-x)^2\textnormal{ and }h^2=c^2-x^2\]

    \[\therefore a^2-(b-x)^2=c^2-x^2\]

    \[a^2-(b^2-2bx+x^2)=c^2-x^2\]

    \[a^2-b^2+2bx-x^2-c^2+x^2=0\]

(1)   \begin{equation*}a^2=b^2+c^2-2bx\end{equation*}

From the diagram above, we can see

    \[cos A=\frac{x}{c}\]

(2)   \begin{equation*}x=c cos A\end{equation*}

Substitute equation 2 into equation 1

    \[a^2=b^2+c^2-2bc cosA\]

It can also be handy to have the angle version

    \[cosA=\frac{b^2+c^2-a^2}{2bc}\]

1 Comment

Filed under Non-Right Trigonometry, Right Trigonometry, Trigonometry, Uncategorized

Three Circles – Area Problem

This is question 5 from the UK Maths Trust Senior Challenge October 2023.

I have tackled this in three ways; using non-right trig to find the area, Heron’s Law, and the Shoelace Formula.

Method 1

Use the area of a triangle formula

Use the cosine rule to find cosθ.

Once we have cosθ, we can find sinθ.

Hence the area is,

Method 2

Use Heron’s law.

Heron’s law is a way of calculating area of a triangle from the lengths of the three sides of the triangle.

This is my preferred method – simple and direct.

Method 3

Shoelace formula (Gauss’s Area formula)

We need to allocate each of the vertices a co-ordinate.

The co-ordinates are listed in an anti-clockwise direction.

This is probably a bit over the top, but once you get the hang of it, it’s very easy.

Leave a Comment

Filed under Area, Area of Triangles (Sine), Heron's Law, Non-Right Trigonometry, Shoelace Forumla, Trigonometry