Category Archives: Trigonometry

Differentiating the Tangent Function

Remember tan(x)=\frac{sin(x)}{cos(x)}.

I use the quotient rule to differentiate f(x)=tan(x).

(1)   \begin{equation*}\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\end{equation*}

If h(x)=tan(x)=\frac{sin(x)}{cos(x)} then from equation 1

(2)   \begin{equation*}h'(x)=\frac{cos(x)cos(x)-(-sin(x)sin(x))}{[cos(x)]^2}\end{equation*}

(3)   \begin{equation*}h'(x)=\frac{cos^2(x)+sin^2(x)}{cos^2(x)}\end{equation*}

Remember the Pythagorean identity

(4)   \begin{equation*}sin^2(x)+cos^2(x)=1\end{equation*}

Hence

    \begin{equation*}h'(x)=\frac{1}{cos^2(x)}=sec^2(x)\end{equation}

(5)   \begin{equation*}\frac{d}{dx}tan(x)=sec^2(x)\end{equation*}

Leave a Comment

Filed under Calculus, Differentiation, Differentiation, Identities, Quotient Rule, Trigonometry, Year 12 Mathematical Methods

Differentiating Trigonometric Functions

In the last post we looked at two trig limits:

(1)   \begin{equation*}\lim_{x \to 0}\frac{sin(x)}{x}=1\end{equation*}

(2)   \begin{equation*}\lim_{x \to 0}\frac{1-cos(x)}{x}=0\end{equation*}

We are going to use these two limits to differentiate sine and cosine functions from first principals.

    \begin{equation*}f(x)=sin(x)\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x+h)-sin(x)}{h}\end{equation}

Use the trig identity

    \begin{equation*}sin(A+B)=sinAcosB+sinBcosA\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}(\frac{sin(x)(cos(h)-1)}{h}+\frac{sin(h)cos(x)}{h})\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{(cos(h)-1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{-(-cos(h)+1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=sin(x)\times 0+cos(x)\times (1)=cos(x)\end{equation}

Hence, \frac{d}{dx}sin(x)=cos(x).

Now we are going to do the same for f(x)=cos(x).

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x+h)-cos(x)}{h}\end{equation}

Use the trigonometric identity

    \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)cos(h)-sin(x)sin(h)-cos(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)(cos(h)-1)-sin(x)sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=cos(x)\lim\limits_{h \to 0}\frac{-(1-cos(h))}{h}-sin(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=cos(x)\times(0)-sin(x)\times (1)=-sin(x)\end{equation}

Hence \frac{d}{dx} cos(x)=-sin(x)

1 Comment

Filed under Calculus, Differentiation, Identities, Trigonometry, Year 12 Mathematical Methods

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods

Interesting Sum

S=\sum_{n=1}^\infty (tan^{-1}(\frac{2}{n^2})), find S.

I came across this sum in An Imaginary Tale by Nahin and I was fascinated.

Let tan(\alpha)=n+1 and tan(\beta)=n-1.

Remember
tan(\alpha-\beta)=\frac{tan(\alpha)-tan(\beta)}{1+tan(\alpha)tan(\beta)}
Hence,
tan(\alpha-\beta)=\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}
tan(\alpha-\beta)=\frac{2}{1+n^2-1}
tan(\alpha-\beta)=\frac{2}{n^2}
Therefore,
\alpha-\beta=tan^{-1}(\frac{2}{n^2})
and
\alpha=tan^{-1}(n+1) and \beta=tan^{-1}(n-1)

tan^{-1}(n+1)-tan^{-1}(n-1)=tan^{-1}(\frac{2}{n^2})

Which means,

    \begin{equation*}S=\sum_{n=1}^\infty(tan^{-1}(n+1)-tan^{-1}(n-1))\end{equation}

Let’s try a few partial sums

S_4=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)

S_4=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(4)+tan^{-1}(5)

S_6=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)+tan^{-1}(6)-tan^{-1}(4)+tan^{-1}(7)-tan^{-1}(5)

S_6=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(6)+tan^{-1}(7)

Hence, S_N=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(N)+tan^{-1}(N+1)

S_N=-\frac{\pi}{4}-0+tan^{-1}(N)+tan^{-1}(N+1)

What happens as N\rightarrow \infty ?

\lim\limits_{N\to \infty}\ S_N=-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{3\pi}{4}

Because we know tan(\frac{\pi}{2}) is undefined.

1 Comment

Filed under Identities, Interesting Mathematics, Puzzles, Sequences, Trigonometry

Infinite Product Expansion of cos (x)

Remember

(1)   \begin{equation*}cos(x)=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation*}

We know that cos(x)=0 for odd integer multiples of \frac{\pi}{2}, i.e. \frac{\pi}{2}, \frac{3\pi}{2}, ..., which is \frac{(2n-1)\pi}{2} for n\neq 0

Hence,

    \begin{equation*}0=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+...\end{equation}

for x=\frac{(2n-1)\pi}{2}, n>0

We can factorise our cos(x) expansion

    \begin{equation*}(1-\frac{x^2}{r_1})(1-\frac{x^2}{r_2})...\end{equation}

We know r_1=\frac{\pi}{2}, r_2=\frac{3\pi}{2}, ...

    \begin{equation*}cos(x)=(1-\frac{x^2}{(\frac{\pi}{2})^2})(1-\frac{x^2}{(\frac{3\pi}{2})^2})...(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{x^2}{(\frac{(2n-1)\pi}{2})^2})\end{equation}

    \begin{equation*}cos(x)=\Pi_{n=1}^{\infty}(1-\frac{4x^2}{(2n-1)^2\pi^2})\end{equation}

1 Comment

Filed under Factorising, Identities, Infinite Product Expansion, Interesting Mathematics, Polynomials, Trigonometry

Related Rates Question

A boat is moving towards the beach line at 3 metres/minute. On the boat is a rotating light, revolving at 4 revolutions/minute clockwise, as observed from the beach. There is a long straight wall on the beach line, as the boat approaches the beach, the light moves along the wall. Let x equal the displacement of the light from the point O on the wall, which faces the boat directly. See the diagram below.
Determine the velocity, in metres/minute, of the light when x=5 metres, and the distance of the boat from the beach D is 12 metres.

Mathematics Specialist Semester 2 Exam 2018


The light is rotating at 4 revolutions/minute, which means

    \begin{equation*}\frac{d\theta}{dt}=4\times\pi\end{equation}

We want to find \frac{dx}{dt} and we know \frac{d\theta}{dt} and \frac{dD}{dt}.

We need to find an equation connecting x, \theta, and D.

    \begin{equation*}tan (\theta)=\frac{x}{D}\end{equation}

Differentiate (implicitly) with respect to time.

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

Now we know x=5, and D=12, using pythagoras we can calulate the hypotenuse.


h=\sqrt{12^2+3^2}=13
sec(\theta)=\frac{13}{12}

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

    \begin{equation*}(\frac{13}{12})^2\times 4\pi=\frac{\frac{dx}{dt}12-3\times 5}{12^2}\end{equation}

    \begin{equation*}169\times4\pi=12\frac{dx}{dt}-15\end{equation}

    \begin{equation*}676\pi+15=12\frac{dx}{dt}\end{equation}

    \begin{equation*}\frac{dx}{dt}=178.2\end{equation}

The velocity of the light is 178.2 m/minute.

Leave a Comment

Filed under Differentiation, Implicit, Pythagoras, Right Trigonometry, Trigonometry, Uncategorized

Using De Moivre’s Theorem for Trigonometric Identities

We are going to use De Moivre’s theorem to prove trigonometric identities.

Remember, De Moivre’s Theorem

If z=r(cos(\theta)+isin(\theta)), then z^n=r^n(cos(n\theta)+isin(n\theta))

Or a shorter version z=rcis(\theta), then z^n=r^ncis(n\theta)

Now, let z=cos(\theta)+isin(\theta), find z+\frac{1}{z}

z+z^{-1}=cos(\theta)+isin(\theta)+cos(-\theta)+isin(-\theta)

Remember cos(\theta)=cos(\theta) and sin(-\theta)=-sin(\theta)

z+\frac{1}{z}=cos(\theta)+isin(\theta)+cos(\theta)-isin(\theta)

z+\frac{1}{z}=2cos(\theta)

It is the same for z^n+\frac{1}{z^n}

z^n+z^{-n}=cos(n\theta)+isin(n\theta)+cos(-n\theta)+isin(-n\theta)

z^n+\frac{1}{z^n}=2cos(n\theta)

Prove cos(2\theta)=2cos^2(\theta)-1
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})
LHS=\frac{1}{2}(z^2+\frac{1}{z^2})+z\times\frac{1}{z}-z\times\frac{1}{z}
LHS=\frac{1}{2}(z^2+2z\times\frac{1}{z}+\frac{1}{z^2})-z\times\frac{1}{z}
LHS=\frac{1}{2}(z+\frac{1}{z})^2-1
LHS=\frac{1}{2}(2cos(\theta))^2-1
LHS=\frac{1}{2}(4cos^2(\theta))-1
LHS=2cos^2(\theta)-1
LHS=RHS

We can do something similar with sine.

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(-\theta)+isin(-\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-(cos(\theta)-isin(\theta))

z-\frac{1}{z}=cos(\theta)+isin(\theta)-cos(\theta)+isin(\theta)

z-\frac{1}{z}=2isin(\theta)

Hence z^n-\frac{1}{z^n}=2isin(n\theta)

Prove sin(2\theta)=2sin(\theta)cos(\theta)
LHS=sin(2\theta)
LHS=\frac{1}{2i}(z^2-\frac{1}{z^2})
LHS=\frac{1}{2i}(z-\frac{1}{z})(z+\frac{1}{z})
LHS=\frac{1}{2i}(2isin(\theta)(2cos(\theta))
LHS=sin(\theta)2cos(\theta)
LHS=2sin(\theta)cos(\theta)
LHS=RHS

Let’s find an identity for cos(3\theta)

cos(3\theta)=\frac{1}{2}(z^3+\frac{1}{z^3})

=\frac{1}{2}(z^3+\frac{1}{z^3}+3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}-3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2})

=\frac{1}{2}((z+\frac{1}{z})^3-3z-\frac{3}{z})

=\frac{1}{2}((z+\frac{1}{z})^3-3(z+\frac{1}{z}))

=\frac{1}{2}(2cos(\theta))^3-3(2cos(\theta)))

=\frac{1}{2}(8cos^3(\theta)-6cos(\theta))

=4cos^3(\theta)-3cos(\theta)

\therefore cos(3\theta)=4cos^3(\theta)-3cos(\theta)

And sin(3\theta)?

sin(3\theta)=\frac{1}{2i}(z^3-\frac{1}{z^3})

=\frac{1}{2i}(z^3-\frac{1}{z^3}-3z^2\times\frac{1}{z}+3z\times\frac{1}{z^2}+3z^2\times\frac{1}{z}-3z\times\frac{1}{z^2}

=\frac{1}{2i}((z-\frac{1}{z})^3+3z-\frac{3}{z})

=\frac{1}{2i}(2isin(\theta))^3+3(z-\frac{1}{z}))

=\frac{1}{2i}(-8isin^3(\theta)+6isin(\theta))

=-4sin^3(\theta)+3sin(\theta)

\therefore sin(3\theta)=3sin(\theta)-4sin^3(\theta)

Leave a Comment

Filed under Complex Numbers, Identities, Trig Identities, Trigonometry

Non-Right Trigonometry Problem

I worked on this question with one of my students (I don’t know where it is from).


Mike leaves the rose bush he was examining and walks 35m in the direction
S20^{\circ}W towards a pond.
From there he walks 70m towards a rotunda. Mike is now 100m from the rose bush.
Find the bearing of the rotunda from the pond.

Let’s try to draw a diagram

Because we don’t the direction Mike walked from the pond, I have drawn a circle with radius 70m centred at the pond.

We know Mike is now 100m from the rose bush. As we don’t know the direction, I have drawn another circle with radius 100m centred at the rose bush. Where the two circles intersect are the possible locations of the rotunda.

First Position



Use the cosine rule to find the angle
cos\theta=\frac{b^2+c^2-a^2}{2bc}
cos\theta=\frac{70^2+35^2-100^2}{2(70)(35)}
\theta=cos^{-1}(\frac{-3875}{5250})
\theta=137.6^{\circ}




Using the fact that alternate angles in parallel lines are congruent, we can see
that the bearing from the pond to the rotunda is
360-(137.6-20)=242.2^{\circ} T

Second Position


It is the same triangle, so
\theta=137.6^{\circ}.

This time the bearing is
20+137.6=157.6^{\circ}T

Hence, the two possible bearings of the rotunda from the pond are 242.2^{\circ}T or 157.6^{\circ}T.

Leave a Comment

Filed under Bearings, Non-Right Trigonometry, Trigonometry

Proof of the Sine Rule

As I have done a cosine rule proof, I thought I should also do a sine rule proof.

\frac{sinA}{a}=\frac{sinB}{b}=\frac{sinC}{c}\textnormal{ or }\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}

From the above diagram, we can find h in two ways.

sinC=\frac{h}{a}

(1)   \begin{equation*}h=asinC\end{equation*}

sinA=\frac{h}{c}

(2)   \begin{equation*}h=csinA\end{equation*}

Set equation 1 equal to equation 2

asinC=csinA

\frac{a}{sinA}=\frac{c}{sinC} or \frac{sinC}{c}=\frac{sinA}{a}

We could have put the altitude of the triangle from vertex A

Following the same process as above

sinC=\frac{h}{b}

(3)   \begin{equation*}h=bsinC\end{equation*}

sinB=\frac{h}{c}

(4)   \begin{equation*}h=csinB\end{equation*}

Set equation 3 equal to equation 4.

bsinC=csinB

\frac{b}{sinB}=\frac{c}{sinC}

Now \frac{c}{sinC}=\frac{a}{sinA} therefore

\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA} or \frac{sinB}{b}=\frac{sinC}{c}=\frac{sinA}{a}

Leave a Comment

Filed under Non-Right Trigonometry, Right Trigonometry, Trigonometry

Proof of the cosine rule

    \[a^2=b^2+c^2-2bccos(A)\]

From the diagram above

    \[h^2=a^2-(b-x)^2\textnormal{ and }h^2=c^2-x^2\]

    \[\therefore a^2-(b-x)^2=c^2-x^2\]

    \[a^2-(b^2-2bx+x^2)=c^2-x^2\]

    \[a^2-b^2+2bx-x^2-c^2+x^2=0\]

(1)   \begin{equation*}a^2=b^2+c^2-2bx\end{equation*}

From the diagram above, we can see

    \[cos A=\frac{x}{c}\]

(2)   \begin{equation*}x=c cos A\end{equation*}

Substitute equation 2 into equation 1

    \[a^2=b^2+c^2-2bc cosA\]

It can also be handy to have the angle version

    \[cosA=\frac{b^2+c^2-a^2}{2bc}\]

1 Comment

Filed under Non-Right Trigonometry, Right Trigonometry, Trigonometry, Uncategorized