Category Archives: Puzzles

Problem Solving

I am came across this problem and was fascinated. It’s from this book

At first I went straight to the 14-sided polygon, and tried to draw the diamonds (parallelograms), but then I thought let’s start smaller and see if there is a pattern.

Clearly a square contains 1 diamond (itself).

Pentagon

It’s not possible with a pentagon.

Hexagon

A hexagon has 6 diamonds

Septagon

I am guessing it’s not possible to fill a regular 7-sided shape with diamonds

It’s not possible with odd numbers of sides. Regular polygons with an odd number of sides have no parallel sides, so we can’t cover it with rhombi (which have opposite sides parallel).

Octagon

An octagon has 6 diamonds.

We know a decoagon has 10 diamonds (from the question)

Let’s put together what we know

n46810
Diamonds13610

These are the triangular numbers, so when n=12 the number of diamonds is 15, and for n=14 it’s 21.

We can work out a rule for calculating the number of diamonds given the number of sides.

Because the difference in the n values is not 1, I am going to get n and D in terms of k and then combine the two equations.

From the above table, n=2k+2

We know this rule is quadratic as the second difference is constant, hence

D=\frac{1}{2}k^2+bk+c

    \begin{equation*}1=\frac{1}{2}+b+c\end{equation}

(1)   \begin{equation*}\frac{1}{2}=b+c\end{equation*}

    \begin{equation*}3=\frac{1}{2}2^2+2b+c\end{equation}

(2)   \begin{equation*}1=2b+c\end{equation*}

Solve simultaneously, subtract equation 1 from equation 2

(3)   \begin{equation*}\frac{1}{2}=b\end{equation*}

Substitute for b=\frac{1}{2} into equation 1

    \begin{equation*}\frac{1}{2}=\frac{1}{2}+c\end{equation}

c=0, therefore D=\frac{1}{2}k^2+\frac{1}{2}k

We know n=2k+2 hence k=\frac{n-2}{2}

Hence D=\frac{1}{2}(\frac{n-2}{2})^2+\frac{1}{2}(\frac{n-2}{2})

D=\frac{1}{8}(n^2-4n+4)+\frac{1}{4}(n-2)=\frac{n^2}{8}-\frac{n}{2}+\frac{1}{2}+\frac{n}{4}-\frac{1}{2}=\frac{n^2}{8}-\frac{n}{4}

    \begin{equation*}D=\frac{n^2}{8}-\frac{n}{4}\end{equation}

Let’s test our rule for n=14

    \begin{equation*}D=\frac{14^2}{8}-\frac{14}{4}=\frac{49}{2}-\frac{7}{2}=\frac{42}{2}=21\end{equation}

Leave a Comment

Filed under Area, Geometry, Interesting Mathematics, Puzzles, Quadratics

Interesting Sum

S=\sum_{n=1}^\infty (tan^{-1}(\frac{2}{n^2})), find S.

I came across this sum in An Imaginary Tale by Nahin and I was fascinated.

Let tan(\alpha)=n+1 and tan(\beta)=n-1.

Remember
tan(\alpha-\beta)=\frac{tan(\alpha)-tan(\beta)}{1+tan(\alpha)tan(\beta)}
Hence,
tan(\alpha-\beta)=\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}
tan(\alpha-\beta)=\frac{2}{1+n^2-1}
tan(\alpha-\beta)=\frac{2}{n^2}
Therefore,
\alpha-\beta=tan^{-1}(\frac{2}{n^2})
and
\alpha=tan^{-1}(n+1) and \beta=tan^{-1}(n-1)

tan^{-1}(n+1)-tan^{-1}(n-1)=tan^{-1}(\frac{2}{n^2})

Which means,

    \begin{equation*}S=\sum_{n=1}^\infty(tan^{-1}(n+1)-tan^{-1}(n-1))\end{equation}

Let’s try a few partial sums

S_4=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)

S_4=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(4)+tan^{-1}(5)

S_6=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)+tan^{-1}(6)-tan^{-1}(4)+tan^{-1}(7)-tan^{-1}(5)

S_6=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(6)+tan^{-1}(7)

Hence, S_N=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(N)+tan^{-1}(N+1)

S_N=-\frac{\pi}{4}-0+tan^{-1}(N)+tan^{-1}(N+1)

What happens as N\rightarrow \infty ?

\lim\limits_{N\to \infty}\ S_N=-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{3\pi}{4}

Because we know tan(\frac{\pi}{2}) is undefined.

1 Comment

Filed under Identities, Interesting Mathematics, Puzzles, Sequences, Trigonometry

Puzzle Page 2

If x^2-3x+1=0, then find x^5+\frac{1}{x^5}.

My first thought was to solve for x, but it doesn’t factorise easily, and I didn’t want to find the fifth power of an expression involving surds (x=\frac{3\pm \sqrt{5}}{2}), there must be an easier way.

Because x\neq0, we can divide by x

    \begin{equation*}x-3+\frac{1}{x}=0\end{equation}

Hence

(1)   \begin{equation*}x+\frac{1}{x}=3\end{equation*}

What is the expansion of (x+\frac{1}{x})^5?

Using the binomial expansion theorem

    \begin{equation*}(x+\frac{1}{x})^5=x^5+5x^4(\frac{1}{x})+10x^3(\frac{1}{x^2})+10x^2(\frac{1}{x^3})+5x(\frac{1}{x^4})+\frac{1}{x^5}\end{equation}

    \begin{equation*}(x+\frac{1}{x})^5=x^5+\frac{1}{x^5}+5(x^3+\frac{1}{x^3})+10(x+\frac{1}{x})\end{equation}

Therefore

(2)   \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5(x^3+\frac{1}{x^3})-10(x+\frac{1}{x})\end{equation*}

Let’s do it again for x^3+\frac{1}{x^3}

    \begin{equation*}(x+\frac{1}{x})^3=x^3+3x^2(\frac{1}{x})+3x(\frac{1}{x^2})+\frac{1}{x^3}\end{equation}

(3)   \begin{equation*}x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})\end{equation*}

Substitute 3 into 2

    \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5((x+\frac{1}{x})^3-3(x+\frac{1}{x}))-10(x+\frac{1}{x})\end{equation}

Remember x+\frac{1}{x}=3

Therefore

    \begin{equation*}x^5+\frac{1}{x^5}=3^5-5(3^3)+15\times3-10\times3\end{equation}

    \begin{equation*}x^5+\frac{1}{x^5}=243-135+45-30=123\end{equation}

This would be a good extension question for students learning the binomial expansion theorem. We also use this technique for trigonometric identities using complex numbers.

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Puzzles

Puzzle Page 1

If \frac{a+b+2c}{a+b-c}=\frac{31}{15}, what does \frac{a+b}{c} equal?

    \begin{equation*}15(a+n+2c)=31(a+b-c)\end{equation}

    \begin{equation*}15a+15b+30c=31a+31b-31c)\end{equation}

    \begin{equation*}61c=16a+16b)\end{equation}

    \begin{equation*}\frac{61}{16}=\frac{a+b}{c}\end{equation}

Two positive numbers are such that their difference, their sum, and their product are in the ratio 2:5:21. What is the smaller of the two numbers?

Let x and y be the two numbers. Then

(1)   \begin{equation*}x-y=2k\end{equation*}

(2)   \begin{equation*}x+y=5k\end{equation*}

(3)   \begin{equation*}xy=21k\end{equation*}

Add equation 1 and 2 together to eliminate the y

    \begin{equation*}2x=7k\end{equation}

(4)   \begin{equation*}x=\frac{7k}{2}\end{equation*}

From 2 =5k-x, substitute for y into equation 3.

(5)   \begin{equation*}x(5k-x)=21k\end{equation*}

Substitute x=\frac{7k}{2} into equation 5.

    \begin{equation*}\frac{7k}{2}(5k-\frac{7k}{2})=21k\end{equation}

    \begin{equation*}\frac{35k^2}{2}-\frac{49k^2}{4}=21k\end{equation}

    \begin{equation*}\frac{70k^2}{4}-\frac{49k^2}{4}=\frac{84k}{4}\end{equation}

    \begin{equation*}21k^2-84k=0\end{equation}

    \begin{equation*}21k(k-4)=0\end{equation}

Hence, k=0 or k=4.

When k=4, x=\frac{7\times 4}{2}=14 and y=5\times 4-14=6

Therefore the smaller number is 6.

Leave a Comment

Filed under Algebra, Puzzles, Ratio, Solving Equations