Category Archives: Circle Theorems

Intersecting Secant Theorem

CD is a tangent to the circle.

Prove c^2=a(a+b)

I am going to add two chords to the circle

Chord AD and BD are added

\angle{BDC}=\angle{CAD} (angles in alternate segments are congruent)

\angle{BCD}=\angle{DCA} (shared angle)

\therefore \Delta BDC\cong \Delta{DAC} (AA)

Hence

\frac{DC}{AC}=\frac{BC}{DC} (Corresponding sides in similar triangles)

\frac{c}{a+b}=\frac{a}{c}

\therefore c^2=a(a+b)

1 Comment

Filed under Circle Theorems, Geometry, Year 11 Specialist Mathematics

Circle Geometry Question 2

One of my Year 11 Specialist students had this question

Triangle ABC touches the given circle at Points P, Q, R and S only. The secant BW touches the circle at V and W.

Diagram not drawn to scale

(a) Determine the lengths of the line segments marked x, y and z, leaving your answers as exact values.

(b) If the length of the line segment QW is 4 units, determine the exact radius of the circle.

(a) We are going to use the Intersecting Secant Theorem – the tangent version

c^2=a\times(a+b)

Hence, we have

    \begin{equation*}30^2=25(25+x+6)\end{equation}

    \begin{equation*}900=25(31+x)\end{equation}

    \begin{equation*}x=5\end{equation}

Then we can use the intersecting chord theorem to find y.

    \begin{equation*}10\times y=6 \times x\end{equation}

    \begin{equation*}10y=30\end{equation}

    \begin{equation*}y=3\end{equation}

Back to the Intersecting Secant Theorem to find z

    \begin{equation*}z^2=4\times 17\end{equation}

    \begin{equation*}z=2\sqrt{17}\end{equation}

(b)


QW is part of a 3-4-5 triangle, therefore \angle{Q}=90^\circ

This is definitely the case of the diagram not being drawn to scale. If \angle{Q}=90^\circ, then the purple line must be the diameter.

We can use pythagoras to find the length of the diameter

    \begin{equation*}(2r)^2=13^2+4^2\end{equation}

    \begin{equation*}4r^2=185\end{equation}

    \begin{equation*}r=\frac{\sqrt{285}}{2}\end{equation}

The radius of the circle is \frac{\sqrt{285}}{2}

Leave a Comment

Filed under Circle Theorems, Geometry, Pythagoras, Year 11 Specialist Mathematics

Circle Geometry Question

In the above diagram O is the centre of the larger circle. A, B,D and E are points on the circumference of the larger circle. A, C, E and 0 are points on the circumference of the smaller circle. Show that \angle{CAB}=\angle{ABC}. AB, AC and BC are straight lines.

AO=OB (radii of the larger circle)

At a line from O to E (it is also a radius of the larger circle)

Let \angle{CAB}=\alpha.

ACEO is a cyclic quadrilateral.

Hence, \angle{CED}=180-\alpha (AECO is a cyclic quadrilateral)

As CB is a straight line \angle{OEB}=180-(180-\alpha)=\alpha.

\Delta OEB is an isosceles triangle.

Therefore, \angle{ABC}=\alpha

Therefore \angle{ABC}=\angle{CAB}

Leave a Comment

Filed under Circle Theorems, Finding an angle, Geometry, Year 11 Specialist Mathematics