Category Archives: Quotient Rule

Differentiating the Tangent Function

Remember tan(x)=\frac{sin(x)}{cos(x)}.

I use the quotient rule to differentiate f(x)=tan(x).

(1)   \begin{equation*}\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\end{equation*}

If h(x)=tan(x)=\frac{sin(x)}{cos(x)} then from equation 1

(2)   \begin{equation*}h'(x)=\frac{cos(x)cos(x)-(-sin(x)sin(x))}{[cos(x)]^2}\end{equation*}

(3)   \begin{equation*}h'(x)=\frac{cos^2(x)+sin^2(x)}{cos^2(x)}\end{equation*}

Remember the Pythagorean identity

(4)   \begin{equation*}sin^2(x)+cos^2(x)=1\end{equation*}

Hence

    \begin{equation*}h'(x)=\frac{1}{cos^2(x)}=sec^2(x)\end{equation}

(5)   \begin{equation*}\frac{d}{dx}tan(x)=sec^2(x)\end{equation*}

Leave a Comment

Filed under Calculus, Differentiation, Differentiation, Identities, Quotient Rule, Trigonometry, Year 12 Mathematical Methods

Deriving the Quotient Rule for Differentiation

Like we did for the product rule, we are going to derive the differentiating rule for functions in the form y=\frac{f(x)}{g(x)}.

Something like, y=\frac{x^2+3x+2}{x^3-1}

Remember the first principals limit

\lim_{\limits h \to 0}\frac{f(x+h)-f(x)}{h}

If y=\frac{f(x)}{g(x)}, then

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}

Find a common denominator for the numerator (i.e. g(x+h)g(x))

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)}}{h}

To make things a bit easier I am going to multiply by \frac{1}{h} rather than having h as the denominator

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Now I am going to add and subtract f(x)g(x)

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)(g(x)+f(x)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Factorise

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))+f(x)(g(x)-g(x+h))}{g(x+h)g(x)} \times \frac{1}{h}

Change the sign in the middle

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))-f(x)(g(x+h)-g(x))}{g(x+h)g(x)} \times \frac{1}{h}

Separate the limits

y'=g(x)\lim_{\limits h \to 0}\frac{\frac{f(x+h)-f(x)}{h}}{g(x+h)g(x)}-f(x)\lim_{\limits h \to 0}\frac{\frac{g(x+h)-g(x)}{h}}{g(x+h)g(x)}

which simplifies to

y'=g(x)\frac{f'(x)}{g(x)g(x)}-f(x)\frac{g'(x)}{g(x)g(x)}

y'=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}

In words

The derivative of the top times the bottom take the derivative of the bottom times the top all over the bottom squared

Example

y=\frac{x^2+3x+2}{x^3-1}

y'=\frac{(2x+3)(x^3-1)-3x^2(x^2+3x+2)}{(x^3-1)^2}

y'\frac{2x^4-2x+3x^3-3-3x^4-9x^3-6x^2}{(x^3-1)^2}

y'=\frac{-x^4-6x^3-6x^2-2x-3}{(x^3-1)^2}

Exam questions usually specify no simplifying.

2 Comments

Filed under Calculus, Differentiation, Quotient Rule, Year 12 Mathematical Methods