Category Archives: Implicit

Related Rates Question

A boat is moving towards the beach line at 3 metres/minute. On the boat is a rotating light, revolving at 4 revolutions/minute clockwise, as observed from the beach. There is a long straight wall on the beach line, as the boat approaches the beach, the light moves along the wall. Let x equal the displacement of the light from the point O on the wall, which faces the boat directly. See the diagram below.
Determine the velocity, in metres/minute, of the light when x=5 metres, and the distance of the boat from the beach D is 12 metres.

Mathematics Specialist Semester 2 Exam 2018


The light is rotating at 4 revolutions/minute, which means

    \begin{equation*}\frac{d\theta}{dt}=4\times\pi\end{equation}

We want to find \frac{dx}{dt} and we know \frac{d\theta}{dt} and \frac{dD}{dt}.

We need to find an equation connecting x, \theta, and D.

    \begin{equation*}tan (\theta)=\frac{x}{D}\end{equation}

Differentiate (implicitly) with respect to time.

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

Now we know x=5, and D=12, using pythagoras we can calulate the hypotenuse.


h=\sqrt{12^2+3^2}=13
sec(\theta)=\frac{13}{12}

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

    \begin{equation*}(\frac{13}{12})^2\times 4\pi=\frac{\frac{dx}{dt}12-3\times 5}{12^2}\end{equation}

    \begin{equation*}169\times4\pi=12\frac{dx}{dt}-15\end{equation}

    \begin{equation*}676\pi+15=12\frac{dx}{dt}\end{equation}

    \begin{equation*}\frac{dx}{dt}=178.2\end{equation}

The velocity of the light is 178.2 m/minute.

Leave a Comment

Filed under Differentiation, Implicit, Pythagoras, Right Trigonometry, Trigonometry, Uncategorized