Category Archives: Differentiation

HSC Advanced 2024 Question 30

HSC Advanced 2024

Two circles have the same centre O. The smaller circle has a radius of 1 cm, while the larger has a radius of (x+1) cm. The circles enclose a region QRST, which is subtended by angle of {\theta} at O, as shaded.

The area of QRST is A cm2, where A is a constant and A>0

Let P cm be the perimeter of QRST

(a) By finding expressions for the area and perimeter of QRST show that P(x)=2x+\frac{2A}{x}

(b) Show that if the perimeter is minimised, then {\theta} must be less than 2.

(a) A=\frac{1}{2}\theta((x+1)^2-1^2)
A=\frac{1}{2}\theta(x^2+2x)
2A=\theta x^2 +2x \theta
\frac{2A}{x}=\theta x +2\theta

P=\theta(1)+\theta(1+x)+2x
P=2\theta +\theta x +2x
P=\frac{2A}{x}+2x

I like it when the first part requires the student to show something and the second part has them use it (that way they can still do the second part even if they couldn’t do the first part).

(b) \frac{dP}{dx}=2-\frac{2A}{x^2}
0=2-\frac{2A}{x^2}
x=\sqrt{A}

\frac{d^2P}{dx^2}=\frac{4A}{x^3}
Both x and A are greater than zero, therefore \frac{d^2P}{dx^2}>0 and x=\sqrt{A} is a minimum.

Substitute x=\sqrt{A} into the Area formula
2A=A\theta+2\sqrt{A}\theta
\theta=\frac{2A}{A+2\sqrt{A}}
\theta=\frac{2A}{\sqrt{A}(\sqrt{A}+2)}
\theta=\frac{2\sqrt{A}}{\sqrt{A}+2}

Now \frac{2\sqrt{A}}{\sqrt{A}+2}<\frac{2\sqrt{A}}{\sqrt{A}}
Hence \theta<\frac{2\sqrt{A}}{\sqrt{A}}
and \theta<2

Leave a Comment

Filed under Differentiation, Optimisation, Uncategorized

Deriving the Quotient Rule for Differentiation

Like we did for the product rule, we are going to derive the differentiating rule for functions in the form y=\frac{f(x)}{g(x)}.

Something like, y=\frac{x^2+3x+2}{x^3-1}

Remember the first principals limit

\lim_{\limits h \to 0}\frac{f(x+h)-f(x)}{h}

If y=\frac{f(x)}{g(x)}, then

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h}

Find a common denominator for the numerator (i.e. g(x+h)g(x))

y'=\lim_{\limits h \to 0}\frac{\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)}}{h}

To make things a bit easier I am going to multiply by \frac{1}{h} rather than having h as the denominator

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Now I am going to add and subtract f(x)g(x)

y'=\lim_{\limits h \to 0}\frac{f(x+h)g(x)-f(x)(g(x)+f(x)g(x)-f(x)g(x+h)}{g(x+h)g(x)} \times \frac{1}{h}

Factorise

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))+f(x)(g(x)-g(x+h))}{g(x+h)g(x)} \times \frac{1}{h}

Change the sign in the middle

y'=\lim_{\limits h \to 0}\frac{g(x)(f(x+h)-f(x))-f(x)(g(x+h)-g(x))}{g(x+h)g(x)} \times \frac{1}{h}

Separate the limits

y'=g(x)\lim_{\limits h \to 0}\frac{\frac{f(x+h)-f(x)}{h}}{g(x+h)g(x)}-f(x)\lim_{\limits h \to 0}\frac{\frac{g(x+h)-g(x)}{h}}{g(x+h)g(x)}

which simplifies to

y'=g(x)\frac{f'(x)}{g(x)g(x)}-f(x)\frac{g'(x)}{g(x)g(x)}

y'=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}

In words

The derivative of the top times the bottom take the derivative of the bottom times the top all over the bottom squared

Example

y=\frac{x^2+3x+2}{x^3-1}

y'=\frac{(2x+3)(x^3-1)-3x^2(x^2+3x+2)}{(x^3-1)^2}

y'\frac{2x^4-2x+3x^3-3-3x^4-9x^3-6x^2}{(x^3-1)^2}

y'=\frac{-x^4-6x^3-6x^2-2x-3}{(x^3-1)^2}

Exam questions usually specify no simplifying.

1 Comment

Filed under Calculus, Differentiation, Quotient Rule, Year 12 Mathematical Methods

Deriving the Product Rule for Differentiation

In my previous post we looked at the Chain Rule for Differentiation, this post is on the Product Rule. Differentiating a function in the form y=f(x)\times g(x).

For example, y=(3x^3+2x-1)(x^4+2x^2)

Remember differentiating from first prinicpals:

f'(x)=\lim_{\limits h \to 0} \frac{f(x+h)-f(x)}{h}

y=f(x)g(x)

\frac{dy}{dx}=\lim_{\limits h\to 0}\frac{f(x+h)g(x+h)-f(x)g(x)}{h}}

\small{  \frac{dy}{dx}=\lim_{\limits h \to 0} \frac{f(x+h)g(x+h)-g(x+h)f(x)+g(x+h)f(x)-f(x)g(x)}{h}}

By subtracting and then adding g(x+h)f(x) we haven’t changed the limit, but it means we can do some factorising.

\frac{dy}{dx}=\lim_{\limits h \to 0}\frac{g(x+h)(f(x+h)-f(x))+f(x)(g(x+h)-g(x))}{h}

\small{\frac{dy}{dx}=\lim_{\limits h \to 0}g(x+h)\lim_{\limits h \to 0}\frac{f(x+h)-f(x)}{h}+\lim_{\limits h \to 0}f(x)\lim_{\limits h \to 0}\frac{g(x+h)-g(x)}{h}}

When we evaluate the limits

\frac{dy}{dx}=g(x)f'(x)+f(x)g'(x)

Example

Find the derivative of y=(3x^3+2x-1)(x^4+2x^2)

I remember the rule in words ‘derivative of the first times the second plus the derivative of the second times the first’.

y'=(9x^2+2)(x^4+2x^2)+(4x^3+4x)(3x^3+2x-1)

y'=9x^6+18x^4+2x^4+4x^2+12x^6+8x^4-4x^3+12x^4+8x^2-4x

y'=21x^6+40x^4-4x^312x^2-4x

Most exam questions have ‘don’t simplify’, so the first line of working above would be enough.

Onto the Quotient Rule.

2 Comments

Filed under Calculus, Differentiation, Product Rule, Year 12 Mathematical Methods

Deriving the Chain Rule for Differentiation

How to differentiate something in the form y=[f(x)]^n

For example, y=(3x^2-2x+6)^5, we could expand the expression, but the Chain Rule provides a quick and easy method.

Differentiate y=[f(x)]^n

Let u=f(x), then y=u^n

We want to find \frac{dy}{dx}, but \frac{dy}{dx}=\frac{dy}{du}\times \frac{du}{dx}

They’re not fractions, but limits of fractions, but they work like fractions.

\frac{du}{dx}=f'(x) and \frac{dy}{du}=nu^{n-1}

Therefore, \frac{dy}{dx}=f'(x)\times nu^{n-1}

Replace u with f(x)

(1)   \begin{equation*}\frac{dy}{dx}=n[f(x)]^{n-1}f'(x)\end{equation*}

What about a function in the form y=f(g(x))?

We’re going to follow the same process.

Let u=g(x), then y=f(u)

\frac{du}{dx}=g'(x) and \frac{dy}{du}=f'(u)

Therefore \frac{dy}{dx}=f'(u)g'(x)

(2)   \begin{equation*}\frac{dy}{dx}=f'(g(x))g'(x) \end{equation*}

Equations 1 and 2 are versions of the Chain Rule.

Example

Find the derivative of y=(3x^2-2x+6)^5

    \begin{equation*}\frac{dy}{dx}=5(3x^2-2x+6)^4\times (6x-2)\end{equation}

    \begin{equation*}\frac{dy}{dx}=5(6x-2)(3x^2-2x+6)^4\end{equation}

    \begin{equation*}\frac{dy}{dx}=10(3x-1)(3x^2-2x+6)\end{equation}

Next time we are going to look at the Product Rule.

1 Comment

Filed under Calculus, Chain Rule, Differentiation, Year 12 Mathematical Methods

Related Rates Question

A boat is moving towards the beach line at 3 metres/minute. On the boat is a rotating light, revolving at 4 revolutions/minute clockwise, as observed from the beach. There is a long straight wall on the beach line, as the boat approaches the beach, the light moves along the wall. Let x equal the displacement of the light from the point O on the wall, which faces the boat directly. See the diagram below.
Determine the velocity, in metres/minute, of the light when x=5 metres, and the distance of the boat from the beach D is 12 metres.

Mathematics Specialist Semester 2 Exam 2018


The light is rotating at 4 revolutions/minute, which means

    \begin{equation*}\frac{d\theta}{dt}=4\times\pi\end{equation}

We want to find \frac{dx}{dt} and we know \frac{d\theta}{dt} and \frac{dD}{dt}.

We need to find an equation connecting x, \theta, and D.

    \begin{equation*}tan (\theta)=\frac{x}{D}\end{equation}

Differentiate (implicitly) with respect to time.

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

Now we know x=5, and D=12, using pythagoras we can calulate the hypotenuse.


h=\sqrt{12^2+3^2}=13
sec(\theta)=\frac{13}{12}

    \begin{equation*}sec^2(\theta)\frac{d\theta}{dt}=\frac{\frac{dx}{dt}D-\frac{dD}{dt}x}{D^2}\end{equation}

    \begin{equation*}(\frac{13}{12})^2\times 4\pi=\frac{\frac{dx}{dt}12-3\times 5}{12^2}\end{equation}

    \begin{equation*}169\times4\pi=12\frac{dx}{dt}-15\end{equation}

    \begin{equation*}676\pi+15=12\frac{dx}{dt}\end{equation}

    \begin{equation*}\frac{dx}{dt}=178.2\end{equation}

The velocity of the light is 178.2 m/minute.

Leave a Comment

Filed under Differentiation, Implicit, Pythagoras, Right Trigonometry, Trigonometry, Uncategorized

Optimisation

An optimisation question from the 2019 ATAR Mathematics Methods exam.

I always like optimisation questions. There is a nice process to follow:

  • Find the function to optimise (in terms of one variable).
  • Find the stationary points.
  • Find the nature of the stationary points.
  • Find the maximum or minimum.
(a) Volume of the cylinder V=\pi r^2h
42=2r+h
h=42-2r
\therefore V_C=\pi r^2(42-2r)
Volume of spherical decorations V_S=\frac{4}{3}\pi( r_s)^3 where r_s=\frac{r}{3}
V_S=\frac{4\pi r^3}{81}
Volume unused space V=\pi r^2(42-2r)-20(\frac{4\pi r^3}{81})
V=2\pi (21r^2-r^3-\frac{40r^3}{81})
V=2\pi (21r^2-\frac{81r^3}{81}-\frac{40r^3}{81})
V=2\pi (21r^2-\frac{121r^3}{81})

(b) V=2\pi (21r^2-\frac{121r^3}{81})
\frac{dV}{dr}=2\pi (42r-\frac{121r^2}{27})
\frac{dV}{dr}=0
0=42r-\frac{121r^2}{27}
0=r(42-\frac{121r}{27})
r=0 or r=\frac{1134}{121}=9.372

\frac{d^2V}{dr^2}=2\pi (42-\frac{242r}{27})
(\frac{d^2V}{dr^2})_{|r=9.372}=-42
\therefore r=9.372 is a maximum.

Dimensions of the vase, internal diameter=18.7cm internal height=23.3cm

(c) Maximum volume of empty space =2\pi (21r^2-\frac{121r^3}{81})=3863.08cm^3
Volume of one sphere =\frac{4}{3}\pi r^3=3448.03cm^3

There is enough unused space for one extra decoration, but it would depend on how they are packed.

Leave a Comment

Filed under Differentiation, Optimisation, Year 12 Mathematical Methods