Category Archives: Area

Area of Regular Polygons

Finding the area of a regular polygon when you know the side length

Find the area of an n-sided regular polygon if you know the side length, l.

An octagon for a visual reference

Find the h of the triangle in terms of l and theta.

tan(\theta)=\frac{\frac{l}{2}}{h}

h=\frac{l}{2tan(\theta)}

Remember the area of a triangle is A=\frac{1}{2}bh

Hence, A=\frac{1}{2} l \times \frac{l}{2tan(\theta)}=\frac{l^2}{4tan(\theta)}

And \theta=\frac{360}{2n}=\frac{180}{n}

Therefore A=\frac{l^2}{4tan(\frac{180}{n})}

There are n triangles in an n-sided polygon

(1)   \begin{equation*}A=\frac{nl^2}{4tan(\frac{180}{n})}\end{equation*}

Find the area of a hexagon with side length 10cm.
A=\frac{6\times10^2}{4tan(\frac{180}{6})}
A=\frac{600}{4(\frac{1}{\sqrt{3}})}
A=150\sqrt{3} cm^2

Finding the area of a polygon if you know the inradius or the apothem

The apothem and the inradius are the same. It is the radius of the incircle.

Find the area of the triangle in terms of a and theta.

tan(\theta)=\frac{\frac{l}{2}}{a}

l=2atan(\theta)

A=\frac{1}{2}bh

A=\frac{1}{2}2atan(\theta)a=a^2tan(\theta)

And \theta=\frac{180}{n}

Hence for an n-sided polygon

(2)   \begin{equation*}A=na^2tan(\frac{180}{n})\end{equation*}

Find the area of a regular pentagon with apothem 4.5cm
A=5\times 4.5^2tan(\frac{180}{5})
A=73.56cm^2

Finding the area of a regular polygon given the circumradius

The circumradius is the radius of the circumscribed circle (R in the diagram above)

Remember the area of triangle formula

A=\frac{1}{2}absin(\theta)

A=\frac{1}{2}R^2sin(\theta)

\theta=\frac{360}{n}

Hence, A=\frac{1}{2}R^2sin(\frac{360}{n})

Hence, for an n-sided polygon

(3)   \begin{equation*}A=\frac{nR^2sin(\frac{360}{n})}{2}\end{equation*}

Find the area of a regular octagon inscribed in a circle of radius 10cm.
A=\frac{8\times 10^2sin(45)}{2}
A=200\sqrt{2}cm^2

Leave a Comment

Filed under Area, Area of Triangles (Sine), Finding an area, Non-Right Trigonometry, Regular Polygons, Right Trigonometry, Year 11 Mathematical Methods

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods

Volume and Surface Area of a Conical Frustrum

My best attempt at drawing a Frustrum in Geogebra.

We have a truncated cone,

(1)   \begin{equation*}V=\frac{1}{3}\pi R_2^2(h_1+h_2)-\frac{1}{3}\pi R_1^2h_1\end{equation*}

We are unlikely to know h_1. Can we get h_1 in terms that we do know (i.e. R_1, R_2, h_2)?

Think of similar triangles

Cross section of the cone

\Delta ABC \sim \Delta ADE (AA)

R_1 \parallel R_2

\angle {C}=\angle{E} (Corresponding Angles in Parallel Lines)

\angle {B}=\angle {D} (Corresponding Angles in Parallel Lines)

Therefore

    \begin{equation*}\frac{h_1}{R_1}=\frac{h_1+h_2}{R_2}\end{equation}

Rearrange to make h_1 the subject.

    \begin{equation*}h_1=\frac{h_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (1)

    \begin{equation*}V=\frac{1}{3} \pi((R_2^2(\frac{h_2R_1}{R_2-R_1})+h_2)-R_1^2(\frac{h_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1}{R_2-R_1}-\frac{R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1-R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{h_2R_1}{R_2-R_1}(R_2^2-R_1^2))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+\frac{R_1}{R_2-R_1}(R_2-R_1)(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1 R_2+R_1^2)\end{equation}

Now let’s think about the surface area.

The surface area of a cone is A=\pi r^2+\pi rs where s is the slant height of the cone.

Once again, we need to subtract the ‘missing’ part of the cone.

(2)   \begin{equation*}A=\pi R_2^2+\pi R_2(s_1+s_2)+ \pi R_1^2- \pi R_1s_1\end{equation*}

We don’t need to subtract the circle of the top cone because it is the top of the frustrum, but we do need to add it on.

Using similar triangles again

    \begin{equation*}\frac{s_1}{R_1}=\frac{s_1+s_2}{R_2}\end{equation}

    \begin{equation*}s_1=\frac{s_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (2)

    \begin{equation*}A=\pi(R_2^2+R_2(\frac{s_2R_1}{R_2-R_1}+s_2)+\pi R_1^2-R_1(\frac{s_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1^2+\frac{s_2R_1}{R_2-R_1}(R_2-R_1))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1s_2+R_1^2)\end{equation}

    \begin{equation*}A =\pi (R_1^2+s_2(R_1+R_2)+R_2^2)\end{equation}

And hence the curved surface area is \pi s_2(R_1+R_2).

Leave a Comment

Filed under Area, Area of Frustrum, Interesting Mathematics, Measurement, Volume of Frustrum

Tricky Area Ratio Question

A circle of radius r, is inscribed within an isosceles triangle ABC. CA=CB=5r. Given that \angle{ACB} is acute, find the ratio of the area of the circle to that of triangle ABC.

Mathematics Specialist 3AB Question15 page 55

I came across this question while searching for an area of sectors and segments question.

Here’s a diagram

We know AC, AB and BC are tangents to the circle. Because the triangle is isosceles, the distance from A to the circle is the same as the distance from B to the circle.

CP is perpendicular to AB (because the triangle is isosceles).

Because it is proportional, i.e. r and 5r, we can let r=1

Let h=CP

(1)   \begin{equation*}h=\sqrt{25-a^2}\end{equation*}

but h also equals

(2)   \begin{equation*}h=1+\sqrt{(5-a)^2+1}\end{equation*}

Set equation 1 equal to equation 2

    \begin{equation*}\sqrt{25-a^2}={1+\sqrt{(5-a)^2+1}\end{equation}

Square both sides

    \begin{equation*}25-a^2=1+(5-a)^2+1+2\sqrt{(5-a)^2+1}\end{equation}

Expand and simplify

    \begin{equation*}25-a^2=2+25-10a+a^2+2\sqrt{(5-a)^2+1}\end{equation}

    \begin{equation*}0=2-10a+2a^2+2\sqrt{(5-a)^2+1}\end{equation}

Divide by 2

    \begin{equation*}0=1-5a+a^2+\sqrt{(5-a)^2+1}\end{equation}

    \begin{equation*}-\sqrt{(5-a)^2+1}=a^2-5a+1\end{equation}

Square both sides

    \begin{equation*}(5-a)^2+1=a^4-5a^3+a^2-5a^3+25a^2-5a+a^2-5a+1\end{equation}

    \begin{equation*}25-10a+a^2+1=a^4-10a^3+27a^2-10a+1\end{equation}

    \begin{equation*}0=a^4-10a^3+26a^2-25 \end{equation}

I solved this using a graphics calculator

a=-0.8434, a=1.3068, a=4.5367, a=5

We can reject a=-0.8434, a=4.5367, and a=5. If a=5, there isn’t a triangle, and if a=4.5367 \angle{ACB} is not acute.

Hence the area of triangle ABC=a\times h

    \begin{equation*}A_{\Delta}=1.3068\times\sqrt{25-1.3068^2}\end{equation}

(3)   \begin{equation*}A_{\Delta}=6.3069\end{equation*}

(4)   \begin{equation*}A_{\circ}=\pi\end{equation*}

Hence, equation 4 divided by equation 3 is

    \begin{equation*}\frac{\pi}{6.3069}\approx 0.5\end{equation}

Perhaps I approached this question in the wrong way. Is there an easier process?

Leave a Comment

Filed under Area, Geometry, Pythagoras

Three Circles – Area Problem

This is question 5 from the UK Maths Trust Senior Challenge October 2023.

I have tackled this in three ways; using non-right trig to find the area, Heron’s Law, and the Shoelace Formula.

Method 1

Use the area of a triangle formula

Use the cosine rule to find cosθ.

Once we have cosθ, we can find sinθ.

Hence the area is,

Method 2

Use Heron’s law.

Heron’s law is a way of calculating area of a triangle from the lengths of the three sides of the triangle.

This is my preferred method – simple and direct.

Method 3

Shoelace formula (Gauss’s Area formula)

We need to allocate each of the vertices a co-ordinate.

The co-ordinates are listed in an anti-clockwise direction.

This is probably a bit over the top, but once you get the hang of it, it’s very easy.

Leave a Comment

Filed under Area, Area of Triangles (Sine), Heron's Law, Non-Right Trigonometry, Shoelace Forumla, Trigonometry