Category Archives: Simplifying fractions

Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations

Geometry Puzzle

Another puzzle from this book

Two ladders are propped up vertically in a narrow passageway between two vertical buildings. The ends of the ladders are 8 metres and 4 metres above the pavement.
Find the height above the ground, T,

\Delta ABC \sim \Delta TEC and \Delta DCB \sim  \Delta TEB (Angle Angle Similarity)

Hence,

(1)   \begin{equation*}\frac{h}{8}=\frac{x}{x+y}\end{equation*}

(2)   \begin{equation*}\frac{h}{4}=\frac{y}{x+y}\end{equation*}

From equation 1 h=\frac{8x}{x+y} and from 2 h=\frac{4y}{x+y}

Hence, \frac{8x}{x+y}=\frac{4y}{x+y}

Therefore, 8x=4y and y=2x

From equation 1

    \begin{equation*}h=\frac{8x}{3x}=\frac{8}{3}\end{equation}

Hence T is 2 \frac{2}{3}m above the ground.

Leave a Comment

Filed under Geometry, Puzzles, Similarity, Simplifying fractions, Solving Equations

Cats and Dogs

In my town 10% of the dogs think they are cats and 10% of the cats think they are dogs. All the other cats and dogs are perfectly normal. When all the cats and dogs in my town were rounded up and subjected to a rigorous test, 20% of them thought they were cats. What percentage of them really were cats?
Hamilton Olympiad 2003 B4 – The Ultimate Mathematical Challenge

Let x be the number of cats and y be the number of dogs.
Then 0.9x+0.1y think they are cats.
But we also know 20% of the total think they are cats.
0.2(x+y)
Therefore, 0.9x+0.1y=0.2(x+y)
0.9x+0.1y=0.2x+0.2y
0.7x=0.1y
7x=y
Percentage of cats is \frac{x}{x+y}\times100
Substitute 7x for y
\frac{x}{x+7x}\times100=\frac{x}{8x}\times100=\frac{1}{8}\times100=12.5%
\therefore 12.5% of the animals are cats

Leave a Comment

Filed under Algebra, Arithmetic, Percentages, Simplifying fractions, UK Mathematics Challenge