Fibonacci Sequence – Finding the Closed Form

I have been reading An Imaginary Tale – The Story of \sqrt{-1} by Paul J Nahin, which is fabulous. There was a bit in chapter 4 where he found the closed form of the generalised Fibonacci sequence. I thought it would be a good exercise to find the closed from of the Fibonacci sequence.

Just to remind you, the Fibonacci sequence is

1, 1, 2, 3, 5, 8, 13, 21, ...

and it is defined recursively

    \begin{equation*}T_{n+2}=T_{n+1}+T_n, T_0=1, T_1=1\end{equation}

That is, the next term is the sum of the two previous terms, i.e.

    \begin{equation*}T_3=T_2+T_1=1+1=2\end{equation}

Now the starting off point is slightly dodgy as it involves and educated guess as Paul Nahin writes,

How do I know that works? Because I have seen it before, that’s how! […] There is nothing dishonourable about guessing correct solutions – indeed, great mathematicians and scientists, are invariable great guessers – just as long as eventually the guess is verified to work. The next time you encounter a recurrence formula, you can guess the answer too because then you will have already seen how it works.

We start with T_n=kz^n

This means T_{n+2}=T_{n+1}+T_n is kz^{n+2}=kz^{n+1}+kz^n

    \begin{equation*}kz^{n+2}=kz^{n+1}+kz^n\end{equation}

    \begin{equation*}kz^n(z^2-z-1)=0\end{equation}

    \begin{equation*}z^2-z-1=0\end{equation}

    \begin{equation*}z=\frac{1\pm\sqrt{(-1)^2-4(1)(-1)}}{2}\end{equation}

\therefore z=\frac{1+\sqrt{5}}{2} or z=\frac{1-\sqrt{5}}{2}

Hence T_n=k_1(\frac{1+\sqrt{5}}{2})^n+k_2(\frac{1-\sqrt{5}}{2})^n and we can use the initial conditions T_0=1 and T_1=1 to find k_1 and k_2

When n=0, T_0=1

(1)   \begin{equation*}1=k_1+k_2\end{equation*}

When n=1, T_1=1

(2)   \begin{equation*}1=k_1(\frac{1+\sqrt{5}}{2})+k_2(\frac{1-\sqrt{5}}{2})\end{equation*}

From equation 1, k_2=(1-k_1), substitute into equation 2

    \begin{equation*}1=k_1(\frac{1+\sqrt{5}}{2})+(1-k_1)(\frac{1-\sqrt{5}}{2})\end{equation}

    \begin{equation*}1=k_1(\frac{1+\sqrt{5}}{2})+\frac{1-\sqrt{5}}{2}-k_1(\frac{1-\sqrt{5}}{2})\end{equation}

    \begin{equation*}1=k_1\sqrt{5}+\frac{1-\sqrt{5}}{2}\end{equation}

    \begin{equation*}1-(\frac{1-\sqrt{5}}{2})=\sqrt{5}k_1\end{equation}

    \begin{equation*}k_1=\frac{1}{\sqrt{5}}(\frac{1}{2}+\frac{\sqrt{5}}{2})\end{equation}

    \begin{equation*}k_1=\frac{1}{2}(\frac{1}{\sqrt{5}}+1)\end{equation}

    \begin{equation*}k_1=\frac{1+\sqrt{5}}{2\sqrt{5}}\end{equation}

    \begin{equation*}k_2=1-\frac{1+\sqrt{5}}{2\sqrt{5}}\end{equation}

    \begin{equation*}k_2=-(\frac{1-\sqrt{5}}{2\sqrt{5}})\end{equation}

\therefore T_n=(\frac{1+\sqrt{5}}{2\sqrt{5}})(\frac{1+\sqrt{5}}{2})^n-(\frac{1-\sqrt{5}}{2\sqrt{5}})(\frac{1-\sqrt{5}}{2})^n

T_n=\frac{1}{\sqrt{5}}((\frac{1+\sqrt{5}}{2})^{n+1}-(\frac{1-\sqrt{5}}{2})^{n+1})

Does it work?

Remember the sequence is 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

If n=5, T_n=8

    \begin{equation*}T_5=\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^6-\frac{1-\sqrt{5}}{2})^6)\end{equation}

As you can see it works!

Leave a Comment

Filed under Complex Numbers, Fibonacci, Fibonacci Sequence, Interesting Mathematics, Sequences

Leave a Reply

Your email address will not be published. Required fields are marked *