Monthly Archives: February 2025

Differentiating f(x)=e^x

We are going to differentiate f(x)=e^x from first principals.

Remember the definition of a derivative is

(1)   \begin{equation*}f'(x)=\lim_{\limits{h\to 0}}\frac{f(x+h)-f(x)}{h}\end{equation*}

If f(x)=e^x, then

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^{x+h}-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x\times e^h-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x(e^h-1)}{h}\end{equation}

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

Let’s think about \lim_{\limits{h \to 0}}\frac{e^h-1}{h}

Remember e is defined as \lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

(2)   \begin{equation*}\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation*}

Let y=e^h-1, as h \to 0, e^h-1 \to 1-1=0 hence y \to 0

If y=e^h-1, then h=ln(y+1)

(3)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{y}{ln(y+1)}\end{equation*}

We are going to rewrite the equation 3 as

(4)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{\frac{1}{ln(y+1)}}{y}\end{equation*}

And then we can write equation 4 as

(5)   \begin{equation*}{\lim_{\limits{y \to 0}}{\frac{1}{\frac{1}{y}ln(y+1)}\end{equation*}

Using log laws we can write equation 5 as

(6)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{1}{ln(y+1)^{\frac{1}{y}}}\end{equation*}

Let y=\frac{1}{n}

As y \to 0, n \to \infty

equation 6 becomes

(7)   \begin{equation*}\lim_{\limits{n \to \infty}}\frac{1}{ln(\frac{1}{n}+1)^n}\end{equation*}

We can move the limit to inside the natural log

(8)   \begin{equation*}\frac{1}{ln(\lim_{\limits{n \to \infty}}(\frac{1}{n}+1)^n)}\end{equation*}

And we know from the definition of e that e=\lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

Hence, equation 8 is

(9)   \begin{equation*}\frac{1}{ln(e)}=1\end{equation*}

Back to our derivative

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

We know that \lim_{\limits{h \to 0}}{\frac{e^h-1}{h}=1 hence

    \begin{equation*}f'(x)=e^x\end{equation}

Leave a Comment

Filed under Calculus, Differentiation, Year 12 Mathematical Methods

Finding a Recursive Rule for a Sequence (Year 12 Mathematics Applications)

How do we go about finding the rule for a first order linear recurrence relation?

Something like

    \begin{equation*}5, 7, 11, 19, ...\end{equation}

There isn’t a common difference (arithmetic sequence) or a common ratio (geometric sequence). Sometimes you can just see the rule, but an algorithm will be handy.

Let’s say our relationship is

(1)   \begin{equation*}T_{n+1}=bT_n+c, T_1=a\end{equation*}

Referring back to our sequence 5, 7, 11, 19, ..., we know

(2)   \begin{equation*}7=b\times5+c\end{equation*}

and

(3)   \begin{equation*}11=b\times7+c\end{equation*}

We can solve equation 2 and 3 simultaneously

equation 2- equation 3

    \begin{equation*}-4=-2b\end{equation}

Hence b=2

Substitute b=2 into equation 2

    \begin{equation*}7=2\times 5+c\end{equation}

    \begin{equation*}7=10+c\end{equation}

Hence c=-3

    \begin{equation*}T_{n+1}=2T_n-3, T_1=5\end{equation}

Let’s try to generalise

If T_{n+1}=bT_n+c, T_1=a, then

(4)   \begin{equation*}T_2=bT_1+c\end{equation*}

and

(5)   \begin{equation*}T_3=bT_2+c\end{equation*}

Equation 5 - equation 4

    \begin{equation*}T_3-T_2=(T_2-T_1)b\end{equation}

    \begin{equation*} b=\frac{T_3-T_2}{T_2-T_1}\end{equation}

Hence, b=\frac{T_{n+2}-T_{n+1}}{T_{n+1}-T_n}

Once you know b, substitute into either equation to find C.

Example

Find the recursive rule for the following

-8, -12, -20, -36, ...

    \begin{equation*}b=\frac{T_{n+2}-T_{n+1}}{T_{n+1}-T_n}=\frac{-20-(-12)}{-12-(-8)}=\frac{-8}{-4}=2\end{equation}

    \begin{equation*}-12=2\times-8+c\end{equation}

    \begin{equation*}-12=-16+c\end{equation}

Hence c=4 and T_{n+1}=2T_n+4, T_1=-8

It is also possible to find the rule using a Classpad (if it’s in the calculator section} by using an e-activity.

Leave a Comment

Filed under Sequences, Sequences, Year 12 Mathematics Applications

Counting Techniques

Four teachers decide to swap desks at work. How many ways can this be done if no teacher sits at their previous desk?
Mathematics Specialist Units 1&2 Cambridge

I like this question as it seems easy until you start thinking about it. I think the best approach is a tree diagram.

If we think of the four teachers as A, B, C and D. Then A can no longer sit in A, so the options are B, C and D for the first desk.

For the second desk, If B is in the first desk, then A, C or D could be in the second. If C is in the first desk, then A or D could be in the second (B can’t be in the same desk). If D is in the first desk, then A or C can be in the second desk.

And so on, leaving 9 possibilities

BADC
BCDA
BDAC
CADB
CDAB
CDBA
DABC
DCAB
DCBA

1 Comment

Filed under Counting Techniques, Tree Diagram, Year 11 Specialist Mathematics

Differentiating the Tangent Function

Remember tan(x)=\frac{sin(x)}{cos(x)}.

I use the quotient rule to differentiate f(x)=tan(x).

(1)   \begin{equation*}\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{f'(x)g(x)-g'(x)f(x)}{[g(x)]^2}\end{equation*}

If h(x)=tan(x)=\frac{sin(x)}{cos(x)} then from equation 1

(2)   \begin{equation*}h'(x)=\frac{cos(x)cos(x)-(-sin(x)sin(x))}{[cos(x)]^2}\end{equation*}

(3)   \begin{equation*}h'(x)=\frac{cos^2(x)+sin^2(x)}{cos^2(x)}\end{equation*}

Remember the Pythagorean identity

(4)   \begin{equation*}sin^2(x)+cos^2(x)=1\end{equation*}

Hence

    \begin{equation*}h'(x)=\frac{1}{cos^2(x)}=sec^2(x)\end{equation}

(5)   \begin{equation*}\frac{d}{dx}tan(x)=sec^2(x)\end{equation*}

Leave a Comment

Filed under Calculus, Differentiation, Differentiation, Identities, Quotient Rule, Trigonometry, Year 12 Mathematical Methods

Differentiating Trigonometric Functions

In the last post we looked at two trig limits:

(1)   \begin{equation*}\lim_{x \to 0}\frac{sin(x)}{x}=1\end{equation*}

(2)   \begin{equation*}\lim_{x \to 0}\frac{1-cos(x)}{x}=0\end{equation*}

We are going to use these two limits to differentiate sine and cosine functions from first principals.

    \begin{equation*}f(x)=sin(x)\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x+h)-sin(x)}{h}\end{equation}

Use the trig identity

    \begin{equation*}sin(A+B)=sinAcosB+sinBcosA\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{sin(x)cos(h)+sin(h)cos(x)-sin(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}(\frac{sin(x)(cos(h)-1)}{h}+\frac{sin(h)cos(x)}{h})\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{(cos(h)-1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=sin(x)\lim\limits_{h \to 0}(\frac{-(-cos(h)+1)}{h}+cos(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=sin(x)\times 0+cos(x)\times (1)=cos(x)\end{equation}

Hence, \frac{d}{dx}sin(x)=cos(x).

Now we are going to do the same for f(x)=cos(x).

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x+h)-cos(x)}{h}\end{equation}

Use the trigonometric identity

    \begin{equation*}cos(A+B)=cosAcosB-sinAsinB\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)cos(h)-sin(x)sin(h)-cos(x)}{h}\end{equation}

    \begin{equation*}f'(x)=\lim\limits_{h \to 0}\frac{cos(x)(cos(h)-1)-sin(x)sin(h)}{h}\end{equation}

    \begin{equation*}f'(x)=cos(x)\lim\limits_{h \to 0}\frac{-(1-cos(h))}{h}-sin(x)\lim\limits_{h \to 0}\frac{sin(h)}{h}\end{equation}

Evaluate the limits

    \begin{equation*}f'(x)=cos(x)\times(0)-sin(x)\times (1)=-sin(x)\end{equation}

Hence \frac{d}{dx} cos(x)=-sin(x)

1 Comment

Filed under Calculus, Differentiation, Identities, Trigonometry, Year 12 Mathematical Methods

Trigonometric Limits

\lim\limits_{x \to 0}\frac{sin(x)}{x}=?

Unit Circle

Remember cos(x)=\frac{OA}{OB}=\frac{OA}{1}, hence OA=cos(x) and the co-ordinate of A is (cos(x), 0).

sin(x)=\frac{AB}{OB}=\frac{AB}{1}, hence AB=sin(x) and the co-ordinate of B is (cos(x), sin(x))

And from the definition of tan(x) we know D is the point (1, tan(x))

Consider the areas of triangle OAB, sector OBC, and triangle OCD.

We know from inspection of the above diagram that

Area OAB< Area OCB<Area OCD

Which means,

\frac{1}{2}b_1 h_1<\frac{1}{2}r^2x<\frac{1}{2}b_2 h_2

We can ignore all of the halves.

cos(x)sin(x)<x<(1)tan(x)

Remember tan(x)=\frac{sin(x)}{cos(x)}

cos(x)sin(x)<x<\frac{sin(x)}{cos(x)}

Divide everything by sin(x) (as we are in the first quadrant we know sin(x)>0, so we don’t need to worry about the inequality)

cos(x)<\frac{x}{sin(x)}<\frac{1}{cos(x)}

Invert everything and change the direction of the inequalities)

\frac{1}{cos(x)}>\frac{sin(x)}{x}>cos(x)

I am going to rewrite it as follows

cos(x)<\frac{sin(x)}{x}<\frac{1}{cos(x)}

because I like to use less thans rather than greater thans.

Now what happens as x tends to 0?

cos(0)=1

1<\frac{sin(x)}{x}<\frac{1}{1}

Hence by the squeeze theorem \lim\limits_{x \to 0}\frac{sin(x)}{x}=1

Now we know this limit, we are going to use it to find \lim\limits_{x \to 0}\frac{1-cos(x)}{x}

Multiply by \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos(x)}{x}\times \frac{1+cos(x)}{1+cos(x)}

\lim\limits_{x \to 0}\frac{1-cos^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin^2(x)}{x(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times sin(x)(cos(x)+1)}

\lim\limits_{x \to 0}\frac{sin(x)}{x}\times \lim\limits_{x \to 0}sin(x)(cos(x)+1)

If we evaluate the limits,

(1)(sin(0)(cos(0)+1)=1\times 0 \times 2=0

Hence, \lim\limits_{x \to 0}\frac{1-cos(x)}{x}=0

In the next post we are going to use these limits to differentiate sine and cosine functions.

1 Comment

Filed under Area, Area of Triangles (Sine), Calculus, Identities, Trigonometry, Year 12 Mathematical Methods