Monthly Archives: December 2024

Volume of revolution about a line that is not an axis

Find the volume of the solid of revolution obtained by rotating the region bounded by f(x)=x^3+1, g(x)=x^2, 0\le x\le 1 about the line y=3.

Rotate the green region about the line y=3

Washer Method

    \begin{equation*}V=\pi \int [f(x)]^2 dx \end{equation}

The volume of the solid is the volume of y=x^2 rotated about y=3 subtract the volume of y=x^3+1 rotated about y=3.

    \begin{equation*}V=\pi \int_0^1((3-x^2)^2-(3-(x^3+1))^2 dx\end{equation}

3-x^2 is the distance (i.e radius) of the curve and the line.

    \begin{equation*}V=\pi \int_0^1(9-6x^2+x^4-(4-4x^3+x^6)) dx\end{equation}

    \begin{equation*}V=\pi \int_0^1(5-6x^2+4x^3+x^4-x^6) dx\end{equation}

    \begin{equation*}V=\pi (5x-2x^3+x^4+\frac{x^5}{5}-\frac{x^7}{7}]_0^1\end{equation}

    \begin{equation*}V=\pi (5-2+1+\frac{1}{5}-\frac{1}{7})\end{equation}

    \begin{equation*}V=\frac{142 \pi}{35}\end{equation}

Shell Method

The shell method is much harder because we need to split the integral into two parts.

We need to rotate the green region about y=3 and the red region

    \begin{equation*}V=2\pi\int (xf(x))dx\end{equation}

    \begin{equation*}V=2\pi[\int_0^1(3-y)\sqrt{y} dy+\int_1^2 (3-y)(y-1)^{\frac{1}{3}} dy]\end{equation}

3-y is the distance between each y-value and the line of rotation. For example, if we were rotating about the x-axis, the distance is y.

\sqrt{y} is the height of the cylinder between 0 and 1. 1-(y-1)^{\frac{1}{3}} is the height of the cylinder between 1 and 2. Refer back to Shell method for more information.

I used a calculator to find this integral

Leave a Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

Volume of Revolution Method Two (Shell Method)

I am going to use the same example as I did for Method One (Disc or Washer Method).

If we rotate the shaded region about the x- axis, we get an open hollow cylinder (like a pipe).

The width of the integral is \delta y and the midpoint is y.

The height of the cylinder is x, but we need it in terms of y, hence x=f(y)

The volume of the hollow cylinder is the volume of the outer cylinder subtract the volume of the inner cylinder.

    \begin{equation*}V=\pi (y+\frac{\delta y}{2})^2f(y)-\pi (y-\frac{\delta y}{2})^2 f(y)\end{equation}

    \begin{equation*}V=\pi f(y)((y+\frac{\delta y}{2})^2-(y-\frac{\delta y}{2})^2)\end{equation}

Which we can expand using a difference of squares.

    \begin{equation*}V=\pi f(y)(y+\frac{\delta y}{2}+y-\frac{\delta y}{2})(y+\frac{\delta y}{2}-y+\frac{\delta y}{2})\end{equation}

    \begin{equation*}V=\pi f(y)(2y \delta y)\end{equation}

    \begin{equation*}V=2\pi yf(y)\delta y\end{equation}

The volume of the entire sold will be

    \begin{equation*}V=\Sigma_{y=a}^b 2 \pi yf(y)\delta y\end{equation}

As \delta y \rightarrow 0

    \begin{equation*}V=\lim\limits_{\delta y \to 0}\Sigma_{y=a}^b 2 \pi yf(y)\delta y=\int_a^b 2\pi yf(y) dy\end{equation}

Even though we are rotating the line about the x-axis, we are integrating with respect to the y- axis.

Example

Find the volume of the solid generated by revolving the region between y=x^2 and y=2x about the y-axis.

If we are rotating about the y-axis, we will integrate with respect to x.

    \begin{equation*}V=2\pi \int x f(x) dx\end{equation}

The height of our hollow cylinder is 2x-x^2

Hence

    \begin{equation*}V=2\pi\int_0^2 x(2x-x^2) dx\end{equation}

    \begin{equation*}V=2\pi \int_0^2 (2x^2-x^3) dx\end{equation}

    \begin{equation*}V=2\pi (\frac{2x^3}{3}-\frac{x^4}{4}]_0^2\end{equation}

    \begin{equation*}V=2\pi (\frac{2}{3}\times 8-\frac{1}{4}\times 16 )\end{equation}

    \begin{equation*}V=32 \pi(\frac{1}{3}-\frac{1}{4})\end{equation}

    \begin{equation*}V=\frac{8\pi}{3}\end{equation}

Let’s check with method one.

x^2=y and x=\frac{y}{2}

    \begin{equation*}V=\pi \int_0^4 y-\frac{y^2}{4} dy\end{equation}

    \begin{equation*}V=\pi (\frac{y^2}{2}-\frac{y^3}{12})]_0^4\end{equation}

    \begin{equation*}V=\pi(8-\frac{16}{3})\end{equation}

    \begin{equation*}V=\frac{8\pi}{3}\end{equation}

I try to pick the method that makes the integration easier.

1 Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

Volume of Revolution – Method One (Disc or Washer Method)

If we rotate this line segment around the x-axis, we generate a three dimensional solid.

We are going to find the volume of this solid.

This is a better view of the solid

Consider a small section of the line segment and rotate this about the x-axis.

As the width of the section (\delta x) gets smaller (i.e. \rightarrow 0), the solid is a cylinder.

The radius of the cylinder is f(x) and the height of the cylinder is \delta x.

The volume of a cylinder is V=\pi r^2 h

Hence the volume of our section is

    \begin{equation*}V=\pi[f(x)]^2\delta x\end{equation}

If we divide our line segment into a large number of cylinders (of equal height) then,

    \begin{equation*}V=\Sigma_a^b(\pi [f(x)]^2\delta x\end{equation}

where a is the lower x value and b the upper.

Now we want \delta x\rightarrow 0 so V=\lim\limits_{\delta x \to 0} \Sigma_a^b(\pi [f(x)]^2\delta x

Which is

    \begin{equation*}V=\int_a^b \pi [f(x)]^2 dx\end{equation}

Example

The curve y=\sqrt{x-1}, where 2\le x\le5 is rotated about the x-axis to form a solid of revolution. Find the volume of this solid.

    \begin{equation*}V=\pi \int_2^5( y^2 dx)\end{equation}

    \begin{equation*}V=\pi \int_2^5 x-1 \space dx \end{equation}

    \begin{equation*}V=\pi (\frac{x^2}{2}-x]_2^5)\end{equation}

    \begin{equation*}V=\pi(\frac{25}{2}-5-(\frac{4}{2}-2))\end{equation}

    \begin{equation*}V=\frac{15 \pi}{2}\end{equation}

1 Comment

Filed under Integration, Volume of Revolution, Year 12 Specialist Mathematics

Interesting Sum

S=\sum_{n=1}^\infty (tan^{-1}(\frac{2}{n^2})), find S.

I came across this sum in An Imaginary Tale by Nahin and I was fascinated.

Let tan(\alpha)=n+1 and tan(\beta)=n-1.

Remember
tan(\alpha-\beta)=\frac{tan(\alpha)-tan(\beta)}{1+tan(\alpha)tan(\beta)}
Hence,
tan(\alpha-\beta)=\frac{(n+1)-(n-1)}{1+(n+1)(n-1)}
tan(\alpha-\beta)=\frac{2}{1+n^2-1}
tan(\alpha-\beta)=\frac{2}{n^2}
Therefore,
\alpha-\beta=tan^{-1}(\frac{2}{n^2})
and
\alpha=tan^{-1}(n+1) and \beta=tan^{-1}(n-1)

tan^{-1}(n+1)-tan^{-1}(n-1)=tan^{-1}(\frac{2}{n^2})

Which means,

    \begin{equation*}S=\sum_{n=1}^\infty(tan^{-1}(n+1)-tan^{-1}(n-1))\end{equation}

Let’s try a few partial sums

S_4=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)

S_4=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(4)+tan^{-1}(5)

S_6=tan^{-1}(2)-tan^{-1}(0)+tan^{-1}(3)-tan^{-1}(1)+tan^{-1}(4)-tan^{-1}(2)+tan^{-1}(5)-tan^{-1}(3)+tan^{-1}(6)-tan^{-1}(4)+tan^{-1}(7)-tan^{-1}(5)

S_6=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(6)+tan^{-1}(7)

Hence, S_N=-tan^{-1}(0)+-tan^{-1}(1)+tan^{-1}(N)+tan^{-1}(N+1)

S_N=-\frac{\pi}{4}-0+tan^{-1}(N)+tan^{-1}(N+1)

What happens as N\rightarrow \infty ?

\lim\limits_{N\to \infty}\ S_N=-\frac{\pi}{4}+\frac{\pi}{2}+\frac{\pi}{2}=\frac{3\pi}{4}

Because we know tan(\frac{\pi}{2}) is undefined.

1 Comment

Filed under Identities, Interesting Mathematics, Puzzles, Sequences, Trigonometry

Volume and Surface Area of a Conical Frustrum

My best attempt at drawing a Frustrum in Geogebra.

We have a truncated cone,

(1)   \begin{equation*}V=\frac{1}{3}\pi R_2^2(h_1+h_2)-\frac{1}{3}\pi R_1^2h_1\end{equation*}

We are unlikely to know h_1. Can we get h_1 in terms that we do know (i.e. R_1, R_2, h_2)?

Think of similar triangles

Cross section of the cone

\Delta ABC \sim \Delta ADE (AA)

R_1 \parallel R_2

\angle {C}=\angle{E} (Corresponding Angles in Parallel Lines)

\angle {B}=\angle {D} (Corresponding Angles in Parallel Lines)

Therefore

    \begin{equation*}\frac{h_1}{R_1}=\frac{h_1+h_2}{R_2}\end{equation}

Rearrange to make h_1 the subject.

    \begin{equation*}h_1=\frac{h_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (1)

    \begin{equation*}V=\frac{1}{3} \pi((R_2^2(\frac{h_2R_1}{R_2-R_1})+h_2)-R_1^2(\frac{h_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1}{R_2-R_1}-\frac{R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{R_2^2h_2R_1-R_1^2h_2R_1}{R_2-R_1})\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi (R_2^2h_2+\frac{h_2R_1}{R_2-R_1}(R_2^2-R_1^2))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+\frac{R_1}{R_2-R_1}(R_2-R_1)(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1(R_2+R_1))\end{equation}

    \begin{equation*}V=\frac{1}{3} \pi h_2(R_2^2+R_1 R_2+R_1^2)\end{equation}

Now let’s think about the surface area.

The surface area of a cone is A=\pi r^2+\pi rs where s is the slant height of the cone.

Once again, we need to subtract the ‘missing’ part of the cone.

(2)   \begin{equation*}A=\pi R_2^2+\pi R_2(s_1+s_2)+ \pi R_1^2- \pi R_1s_1\end{equation*}

We don’t need to subtract the circle of the top cone because it is the top of the frustrum, but we do need to add it on.

Using similar triangles again

    \begin{equation*}\frac{s_1}{R_1}=\frac{s_1+s_2}{R_2}\end{equation}

    \begin{equation*}s_1=\frac{s_2R_1}{R_2-R_1}\end{equation}

Substitute into equation (2)

    \begin{equation*}A=\pi(R_2^2+R_2(\frac{s_2R_1}{R_2-R_1}+s_2)+\pi R_1^2-R_1(\frac{s_2R_1}{R_2-R_1}))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1^2+\frac{s_2R_1}{R_2-R_1}(R_2-R_1))\end{equation}

    \begin{equation*}A=\pi(R_2^2+R_2s_2+R_1s_2+R_1^2)\end{equation}

    \begin{equation*}A =\pi (R_1^2+s_2(R_1+R_2)+R_2^2)\end{equation}

And hence the curved surface area is \pi s_2(R_1+R_2).

Leave a Comment

Filed under Area, Area of Frustrum, Interesting Mathematics, Measurement, Volume of Frustrum

Puzzle Page 2

If x^2-3x+1=0, then find x^5+\frac{1}{x^5}.

My first thought was to solve for x, but it doesn’t factorise easily, and I didn’t want to find the fifth power of an expression involving surds (x=\frac{3\pm \sqrt{5}}{2}), there must be an easier way.

Because x\neq0, we can divide by x

    \begin{equation*}x-3+\frac{1}{x}=0\end{equation}

Hence

(1)   \begin{equation*}x+\frac{1}{x}=3\end{equation*}

What is the expansion of (x+\frac{1}{x})^5?

Using the binomial expansion theorem

    \begin{equation*}(x+\frac{1}{x})^5=x^5+5x^4(\frac{1}{x})+10x^3(\frac{1}{x^2})+10x^2(\frac{1}{x^3})+5x(\frac{1}{x^4})+\frac{1}{x^5}\end{equation}

    \begin{equation*}(x+\frac{1}{x})^5=x^5+\frac{1}{x^5}+5(x^3+\frac{1}{x^3})+10(x+\frac{1}{x})\end{equation}

Therefore

(2)   \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5(x^3+\frac{1}{x^3})-10(x+\frac{1}{x})\end{equation*}

Let’s do it again for x^3+\frac{1}{x^3}

    \begin{equation*}(x+\frac{1}{x})^3=x^3+3x^2(\frac{1}{x})+3x(\frac{1}{x^2})+\frac{1}{x^3}\end{equation}

(3)   \begin{equation*}x^3+\frac{1}{x^3}=(x+\frac{1}{x})^3-3(x+\frac{1}{x})\end{equation*}

Substitute 3 into 2

    \begin{equation*}x^5+\frac{1}{x^5}=(x+\frac{1}{x})^5-5((x+\frac{1}{x})^3-3(x+\frac{1}{x}))-10(x+\frac{1}{x})\end{equation}

Remember x+\frac{1}{x}=3

Therefore

    \begin{equation*}x^5+\frac{1}{x^5}=3^5-5(3^3)+15\times3-10\times3\end{equation}

    \begin{equation*}x^5+\frac{1}{x^5}=243-135+45-30=123\end{equation}

This would be a good extension question for students learning the binomial expansion theorem. We also use this technique for trigonometric identities using complex numbers.

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Puzzles

Puzzle Page 1

If \frac{a+b+2c}{a+b-c}=\frac{31}{15}, what does \frac{a+b}{c} equal?

    \begin{equation*}15(a+n+2c)=31(a+b-c)\end{equation}

    \begin{equation*}15a+15b+30c=31a+31b-31c)\end{equation}

    \begin{equation*}61c=16a+16b)\end{equation}

    \begin{equation*}\frac{61}{16}=\frac{a+b}{c}\end{equation}

Two positive numbers are such that their difference, their sum, and their product are in the ratio 2:5:21. What is the smaller of the two numbers?

Let x and y be the two numbers. Then

(1)   \begin{equation*}x-y=2k\end{equation*}

(2)   \begin{equation*}x+y=5k\end{equation*}

(3)   \begin{equation*}xy=21k\end{equation*}

Add equation 1 and 2 together to eliminate the y

    \begin{equation*}2x=7k\end{equation}

(4)   \begin{equation*}x=\frac{7k}{2}\end{equation*}

From 2 =5k-x, substitute for y into equation 3.

(5)   \begin{equation*}x(5k-x)=21k\end{equation*}

Substitute x=\frac{7k}{2} into equation 5.

    \begin{equation*}\frac{7k}{2}(5k-\frac{7k}{2})=21k\end{equation}

    \begin{equation*}\frac{35k^2}{2}-\frac{49k^2}{4}=21k\end{equation}

    \begin{equation*}\frac{70k^2}{4}-\frac{49k^2}{4}=\frac{84k}{4}\end{equation}

    \begin{equation*}21k^2-84k=0\end{equation}

    \begin{equation*}21k(k-4)=0\end{equation}

Hence, k=0 or k=4.

When k=4, x=\frac{7\times 4}{2}=14 and y=5\times 4-14=6

Therefore the smaller number is 6.

Leave a Comment

Filed under Algebra, Puzzles, Ratio, Solving Equations