Integration by Parts using the Tabular Method

(1)   \begin{equation*}\int_0^1x^2e^xdx\end{equation*}

I am going to do this integral in two ways; the traditional method and the tabular method.

Traditional Method

Remember \int{u dv}=u\times v-\int{v du}

Let u=x^2 and dv=e^x

Then du=2x and v=\int{e^x dx}=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-\int_0^1{e^x 2x dx}\end{equation}

Now we need to do integration by parts on \int_0^1{e^x 2x dx}

Let u=2x and dv=e^x

Then du=2 and v=e^x

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-\int_0^1{e^x 2 dx})\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=x^2 \times e^x ]_0^1-(2x\times e^x]_0^1-(2e^x )]_0^1)\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e-(2e-(2e-2))\end{equation}

    \begin{equation*}\int_0^1{x^2e^x dx}=e+2\end{equation}

Tabular Integration

Similar to before, select a u and a dv, u=x^2 and dv=e^x

SignD(ifferentiate)I(ntegrate)
+x^2e^x
2xe^x
+2e^x
0e^x

Stop when the differentiating column reaches zero.

Then we multiply diagonally

(+x^2)(e^x)+(-2x)(e^x)+(+2e^x)

=x^2e^x-2xe^x+2e^x]_0^1

=e-2e+2e-(0-0-2)

=e+2

It is only worth using this method if integration by parts is required more than once. Also, the u has to eventually differentiate to 0.

Let’s try another one

(2)   \begin{equation*}\int{x^3cos(2x) dx}\end{equation*}

Let u=x^3 and dv=cos(2x)

SignDI
+x^3cos(2x)
3x^2\frac{1}{2}sin(2x)
+6x-\frac{1}{4}cos(2x)
6-\frac{1}{8}sin(2x)
+0\frac{1}{16}cos(2x)

\int{x^3cos(2x) dx}=(x^3)(\frac{1}{2}sin(2x))+(-3x^2)(-\frac{1}{4}cos(2x))+(6x)(-\frac{1}{8}sin(2x))+(-6)(\frac{1}{16}cos(2x))+c

=\frac{x^3}{2}sin(2x)+\frac{3x^2}{4}cos(2x)-\frac{3x}{4}sin(2x)-\frac{3}{8}cos(2x)+c

Leave a Comment

Filed under Integration, Integration by Parts, Tabular Integration

Leave a Reply

Your email address will not be published. Required fields are marked *