Geometry Circle Question

In the diagram below, A, B, C and D lie on the circle with centre O. If \angle{DBC} = 41^{\circ} and \angle{ACD} = 53^{\circ}, determine with reasoning \angle{BAC} and \angle{AOB}

We know OA=OB=OD – radii of the circle.

Which means, \Delta{AOB} is isosceles and \angle{OAB}=\angle{OBA} – equal angles isosceles triangle.

\angle{AOD}=2\angle{ACD} – angle at the centre twice the angle at the circumference.

\angle{AOB}=106^{\circ}

This means \angle{AOB}=74^{\circ} – angles on a straight line are supplementary

\angle{OAD}=\angle{ODA}=37^{\circ} – equal angles isosceles triangle and the angle sum of a triangle.

\angle{DBA}=\angle{DCA}=53^{\circ} – angle at the circumference subtended by the same arc are congruent.

\angle{CAD}=\angle{CBD}=41^{\circ} – angles at the circumference subtended by the same arc are congruent.

\angle{OAB}=53^{\circ} – equal angle isosceles triangle

Hence \angle{BAC}=12^{\circ}

Leave a Comment

Filed under Circle Theorems, Finding an angle, Geometry, Year 11 Specialist Mathematics

Completing the Square

x^2+6x-4 \rightarrow (x+3)^2-13

Completing the square is useful to

  • sketch parabolas.
  • solve quadratics.
  • factorising quadratics
  • finding the centre and radius version of the equation of a circle.

When completing the square we take advantage of perfect squares. For example, (x+3)^2=(x+3)(x+3)=x^2+6x+9

6=2\times 3 and 9=3\times 3

Example 1

Put x^2+8x-5 into completed square form.

What perfect square has an 8x term?

(x+4)^2=x^2+8x+16

We don’t want +16, we want -5, so subtract 16+5

x^2+8x-5=(x+4)^2-21


x^2+bx+c=(x+\frac{b}{2})^2-(\frac{b}{2})^2+c

What about a non-monic quadratic? For example,

2x^2+12x+11

Factorise the 2

2(x^2+6x+\frac{11}{2})

And continue as before

2[(x+3)^2-9+\frac{11}{2}]=2[(x+3)^2-\frac{18}{2}+\frac{11}{2}]=2[(x+3)^2-\frac{7}{2}]=2(x+3)^2-7

Example 2

y=2x^2+7x-5

2(x^2+\frac{7}{2}x-\frac{5}{2})

2[(x+\frac{7}{4})^2-(\frac{7}{4})^2-\frac{5}{2}]

2[(x+\frac{7}{4})^2-\frac{49}{16}-\frac{40}{16}]

2[(x+\frac{7}{4})^2-\frac{89}{16}]

2(x+\frac{7}{4})^2-\frac{89}{8}


ax^2+bx+c=a(x+\frac{b}{2a})^2-a((\frac{b}{2a})^2+\frac{c}{a})

Casio Classpad e-activity

Leave a Comment

Filed under Algebra, Arithmetic, Classpad Skills, Completing the Square, Fractions, Quadratic, Quadratics, Year 10 Mathematics, Year 9 Mathematics

Equation of a Circle and Geometry Question

A circle has equation x^2+y^2+4x-6y=36
(a) Find the centre and radius of the circle.
Points S and T lie on the circle such that the origin is the midpoint of ST.
(b) Show that ST has a length of 12.

(a)We need to put the circle equation into completed square form

    \begin{equation*}(x+2)^2-4+(y-3)^2-9=36\end{equation}

    \begin{equation*}(x+2)^2+(y-3)^2=49\end{equation}

The centre is (-2, 3) and the radius is 7.

(b)Draw a diagram

We know SO and TO are radii of the circle. Hence \Delta{SOT} is isosceles and the line segment from O to the origin is perpendicular to ST.

OT=7 and the distance from O to the origin is

    \begin{equation*}\sqrt{(-2-0)^2+(3-0)^2}=\sqrt{13}\end{equation}

We can use Pythagoras to find the distance from the origin to T.

    \begin{equation*}x=\sqrt{7^2-(\sqrt{13})^2}=\sqrt{49-13}=\sqrt{36}=6\end{equation}

Hence ST=2\times6=12


Leave a Comment

Filed under Co-ordinate Geometry, Geometry, Pythagoras, Year 11 Mathematical Methods

Integration Question (much easier with Integration by Parts)

The Year 12 Mathematics Methods course doesn’t cover Integration by Parts, so they end up with questions like the following.

Determine the following:
(a) \frac{d}{dx} \left (e^{2x}sin(3x) \right )
(b) \frac{d}{dx} \left (e^{2x}cos(3x) \right )
Hence, determine the following integral by considering both parts (a) and (b)
\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

(a) Use the product rule

(1)   \begin{equation*}\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 2e^{2x}sin(3x)+3e^{2x}cos(3x) \end{equation*}

(b)

(2)   \begin{equation*}\frac{d}{dx} \left (e^{2x}cos(3x) \right )=2e^{2x}cos(3x)-3e^{2x}sin(3x)\end{equation*}

I need to use equations 1 and 2 to find \int_0^{\frac{\pi}{2}}13e^2xcos(3x) \enspace  dx.

The e^{2x}sin(3x) terms need to vanish and I need 13 of the e^{2x}cos(3x) terms.

3\times \text{equation} (1)+ 2\times \text{equation} (2)

(3)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)= 6e^{2x}sin(3x)+9e^{2x}cos(3x) \end{equation*}

(4)   \begin{equation*}2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=4e^{2x}cos(3x)-6e^{2x}sin(3x)\end{equation*}

Equation 3 plus equation 4

(5)   \begin{equation*}3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )=13e^{2x}cos(3x)\end{equation*}

Integrate both sides of the equation

\int_0^{\frac{\pi}{2}} \left (3\frac{d}{dx} \left (e^{2x}sin(3x) \right)+2\frac{d}{dx} \left (e^{2x}cos(3x) \right )  \right ) dx=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

By the fundamental theorem of calculus, we know

(3e^{2x}sin(3x) \right)+2 \left (e^{2x}cos(3x) \right ]_0^{\frac{\pi}{2}}=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

3e^{\pi}sin(\frac{3\pi}{2}})+2e^{\pi}cos(\frac{3\pi}{2}})-3e^0sin(3(0))-2e^0cos(3(0))=\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx

\int_0^{\frac{\pi}{2}}13e^{2x}cos(3x) \enspace dx=-3e^{\pi}-2

Integration by Parts

Remember \int u\enspace dv=uv-\int v \enspace du

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx

Let u=cos(3x), then du=-3sin(3x)

and dv=e^{2x}, then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx = \left (cos(3x)\left (\frac{e^{2x}}{2}\right ) \right )_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(-3sin(3x)) \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=cos(\frac{3\pi}{2})(\frac{e^\pi}{2})-cos(0)(\frac{e^0}{2})+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}\int_0^{\frac{\pi}{2}}sin(3x)e^{2x} \enspace dx

Let u=sin(3x), then du=3cos(3x)

and dv=e^{2x}. then v=\frac{e^{2x}}{2}

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(\frac{e^{2x}}{2}sin(3x)]_0^{\frac{\pi}{2}}-\int_0^{\frac{\pi}{2}} \frac{e^{2x}}{2}(3cos(3x)) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}+\frac{3}{2}(-\frac{e^\pi}{2}-\frac{3}{2} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx)

\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx=-\frac{1}{2}-\frac{3e^\pi}{4}-\frac{9}{4} \int_0^{\frac{\pi}{2}} e^{2x}cos(3x) \enspace dx

Collect like terms (the integrals are like)

\frac{13}{4}(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=-\frac{1}{2}-\frac{3e^\pi}{4}

(\int_0^{\frac{\pi}{2}}e^{2x}cos(3x) \enspace dx)=\frac{-2-3e^\pi}{13}

Leave a Comment

Filed under Algebra, Calculus, Integration, Integration by Parts, Year 12 Mathematical Methods

Fundamental Theorem of Calculus

(1)   \begin{equation*}\frac{d}{dx} \left (\int_2^{f(x)} g(t) dt \right )=g(f(x))f'(x)\end{equation*}

My Year 12 Mathematics Methods students are getting ready for their exam, and questions using the above idea have created a bit of consternation. I am going to work through an example, and show why the ‘formula’ works.

Example

Find \frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right ).

    \begin{equation*}=\frac{d}{dx} \left (\frac{4t^3}{3}+\frac{3t^2}{2} \right ]_2^{x^2}\end{equation}

    \begin{equation*}=\frac{d}{dx} \left ( \frac{4(x^2)^3}{3}+\frac{3(x^2)^2}{2} -(\frac{4(2^3)}{3}+\frac{3(2^2)}{2} \right )\end{equation}

    \begin{equation*}=\frac{d}{dx} \left (\frac{4x^6}{3}+\frac{3x^4}{2}-\frac{50}{3} \right) \end{equation}

    \begin{equation*}=\frac{24x^5}{3}+\frac{12x^3}{2}\end{equation}

(2)   \begin{equation*}=8x^5+6x^3\end{equation*}

If we used ‘formula’ 1

    \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=(4(x^2)^2+3(x^2))(2x)\end{equation}

\

(3)   \begin{equation*}\frac{d}{dx} \left ( \int_2^{x^2} 4t^2+3t \enspace dt \right )=8x^5+6x^3 \end{equation*}

We can see equation 2 and 3 are the same.

More formally

    \begin{equation*}\frac{d}{dx} \left ( \int_c^{f(x)} g(t) dt \right )=\frac{d}{dx} \left (G(f(x))-G(c) \right ) \end{equation}

Remember \frac{d}{dx} \left (f(g(x)) \right )=f'(g(x))\times g'(x)

    \begin{equation*}\frac{d}{dx} \left (G(f(x))-G(c) \right ) =G'(f(x))f'(x)=g(f(x))\times f'(x)\end{equation}

Leave a Comment

Filed under Calculus, Chain Rule, Differentiation, Integration, Year 12 Mathematical Methods

Hard Equation Solving Question

Find the value(s) of k such that the equation below has two numerically equal but opposite sign solutions (e.g. 5 and -5).

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{k-1}{k+1}\end{equation}

    \begin{equation*}(x^2-2x)(k+1)=(k-1)(4x-1)\end{equation}

    \begin{equation*}(k+1)x^2-2kx-2x=4kx-k-4x+1\end{equation}

    \begin{equation*}(k+1)x^2-2kx-4kx-2x+4x-1=0\end{equation}

    \begin{equation*}(k+1)^2x^2-(6k-2)x-1=0\end{equation}

For there to be two numerically equal but opposite sign solutions, the b term of the quadratic equation must be 0.

    \begin{equation*}6k-2=0\end{equation}

Hence k=\frac{1}{3}.

When k=\frac{1}{3} the equation becomes

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{\frac{-2}{3}}{\frac{4}{3}}\end{equation}

    \begin{equation*}\frac{x^2-2x}{4x-1}=\frac{-1}{2}\end{equation}

    \begin{equation*}2x^2-4x=-4x+1\end{equation}

    \begin{equation*}2x^2-1=0\end{equation}

    \begin{equation*}x^2=\frac{1}{2}\end{equation}

    \begin{equation*}x=\pm \frac{1}{\sqrt{2}}\end{equation}

Leave a Comment

Filed under Algebra, Polynomials, Quadratic, Quadratics, Solving, Solving, Solving Equations

Trigonometric Exact Values

Find exactly sin(18^\circ)

We must be able to find an arithmetic combination of the exact values we knew to find 18.

    \begin{equation*}90=5\times 18\end{equation}

    \begin{equation*}90-3(18)=2(18)\end{equation}

I re-arranged as above, so I could take advantage of cos(90)=0 and sin(90)=1

Useful identities
sin(2x)=2sin(x)cos(x)
cos(2x)=cos^2(x)-sin^2(x)=1-2sin^2(x)=2cos^2(x)-1
sin(3x)=3sin(x)-4sin^3(x)
cos(3x)=4cos^3(x)-3cos(x)
sin(A-B)=sin(A)cos(B)-sin(B)cos(A)
cos^2(x)=1-sin^2(x)

    \begin{equation*}sin(90-3(18))=sin(2(18))\end{equation}

    \begin{equation*}sin(90)cos(3(18))-sin(3(18))cos(90)=2sin(18)cos(18)\end{equation}

    \begin{equation*}cos(3(18))=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)=2sin(18)cos(18)\end{equation}

    \begin{equation*}4cos^3(18)-3cos(18)-2sin(18)cos(18)=0\end{equation}

    \begin{equation*}cos(18)(4cos^2(18)-3-2sin(18))=0\end{equation}

Hence,

    \begin{equation*}4cos^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}4-4sin^2(18)-2sin(18)-3=0\end{equation}

    \begin{equation*}-4sin^2(18)-2sin(18)+1=0\end{equation}

Use the quadratic equation formula

    \begin{equation*}sin(18)=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{4-4(-4)(1)}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{2 \pm \sqrt{20}}{-8}\end{equation}

    \begin{equation*}sin(18)=\frac{-2 \mp 2\sqrt{5}}{8}\end{equation}

    \begin{equation*}sin(18)=\frac{-1 \mp \sqrt{5}}{4}\end{equation}

As sin(18)>0, sin(18)=\frac{-1+\sqrt{5}}{4}

sin(18)=\frac{-1+\sqrt{5}}{4}

Leave a Comment

Filed under Addition and Subtraction Identities, Algebra, Identities, Quadratic, Quadratics, Solving, Solving Equations, Solving Trig Equations, Trigonometry, Year 11 Specialist Mathematics

Converting base 10 numbers to base 2

Converting integers to base 2 is reasonably easy.

For example, what is 82 in base 2?

Think about powers of 2

n2^n
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Make 82 the sum of powers of 2.

82=64+16+2=1\times 2^6+0\times 2^5+ 1\times 2^4+0\times 2^3+0\times 2^2+1 \times 2^1+0\times 2^0=1010010

We follow the same approach for real numbers

n2^n
-3\frac{1}{8}=0.125
-2\frac{1}{4}=0.25
-1\frac{1}{2}=0.5
01 (‘ones’)
12 (‘tens’)
24 (‘hundreds)
38 (‘thousands’)

Convert 0.765625 to base 2

0.765625\times 2=1.53125 the first number is 1

0.53125\times 2=1.0625 the second number is 1

0.0625\times 2=0.125 the third number is 0

0.125\times 2=0.25 the fourth number is 0

0.25\times 2=0.5 the fifth number is 0

0.5\times 2=1 the sixth number is 1 and we have finished

0.765625=0.110001_2

What about something like 2.\overline{4}?

The non-decimal part 2=10

0.\overline{4}\times 2=0.\overline{8} first number is zero

0\overline{8}\times 2=1.\overline{7} second number is 1

0.\overline{7}\times 2=1.\overline{5} third number is 1

0.\overline{5}\times 2=1.\overline{1} fourth number is 1

0.\overline{1}\times 2=0.\overline{2} fifth number is 0

0.\overline{2}\times 2=0.\overline{4} sixth number is 0

We are back to where we started, so 2.\overline{4}=10.0111000111000..._2=10.\overline{0.11100}_2

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Number Bases

Geometry Problem

Geometry Snacks by Ed Southall and Vincent Pantaloni

I started by trisecting another side of the triangle

This makes it clearer that the two lines are parallel

Which means the two angles labelled above are corresponding and therefore congruent.

Let the side length be x.

The area of the equilateral triangle is

(1)   \begin{equation*}A=\frac{1}{2}x^2 sin(60)=\frac{\sqrt{3}x^2}{4}\end{equation*}

    \begin{equation*}cos(60)=\frac{y}{\frac{2x}{3}}\end{equation}

    \begin{equation*}y=\frac{x}{3}\end{equation}

Area of right triangle

(2)   \begin{equation*}A=(\frac{1}{2})(\frac{2x}{3})(\frac{x}{3})sin(60)=\frac{\sqrt{3}x^2}{18}\end{equation*}

The fraction of the area is

    \begin{equation*}=\frac{\frac{\sqrt{3}x^2}{18}}{\frac{\sqrt{3}x^2}{4}}=\frac{2}{9}\end{equation}

Leave a Comment

Filed under Algebra, Area, Area of Triangles (Sine), Finding an area, Geometry, Puzzles, Right Trigonometry, Simplifying fractions, Trigonometry

Eigenvalues and Eigenvectors

My Year 11 Specialist students have had an investigation which involves finding eigenvalues, eigenvectors and lines that are invariant under a particular linear transformation. This is not part of the course, but I feel for teachers who have to create new investigations every year.

Let’s find the eigenvalues and eigenvectors for matrix T=\begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}

We want to find \lambda such that

(1)   \begin{equation*}T\textbf{v}=\lambda \textbf{v}\end{equation*}

We solve det(T-\lambda I)=0

    \begin{equation*}T-\lambda I=\begin{bmatrix}-\frac{1}{2}-\lambda&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}-\lambda\end{bmatrix}\end{equation}

det\left (T-\lambda I \right )=\left (-\frac{1}{2}-\lambda \right ) \left ( \frac{1}{2}-\lambda \right )- \left (-\frac{\sqrt{3}}{2} \right ) \left ( -\frac{\sqrt{3}}{2} \right )

Hence 0=\lambda^2-1 and \lambda=\pm 1

When \lambda=1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}x_1\\x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=x_1

x_2=-\frac{3x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\-\sqrt{3}\end{bmatrix}

When \lambda=-1, \begin{bmatrix}-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\-\frac{\sqrt{3}}{2}&\frac{1}{2}\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}-x_1\\-x_2\end{bmatrix}

Hence, -\frac{x_1}{2}-\frac{\sqrt{3}x_2}{2}=-x_1

x_2=\frac{x_1}{\sqrt{3}} and the eigenvector is \begin{bmatrix}1\\\frac{1}{\sqrt{3}}\end{bmatrix}

Which means the invariant lines are y=-\sqrt{3}x and y=\frac{x}{\sqrt{3}}

A quadrilateral with vertices on our lines
The vertices after they have been transformed – A and C remain in the same place (they are on the \lambda=1 line)
The quadrilateral (purple) after the transformation

Leave a Comment

Filed under Co-ordinate Geometry, Eigenvalues, Matrices, Transformations, Vectors, Year 11 Specialist Mathematics