Deriving the Quadratic Equation formula

My year 10 students have been learning how to complete the square with the idea of then deriving the quadratic equation formula.

The general equation for a quadratic is y=ax^2+bx+c

Completing the square,

    \begin{equation*}ax^2+bx+c\end{equation}

Factorise out the leading coefficient (i.e. a)

    \begin{equation*}a(x^2+\frac{bx}{a}+\frac{c}{a})\end{equation}

Half the second term (i.e \frac{b}{a}) and subtract the square of the second term.

    \begin{equation*}a((x+\frac{b}{2a})^2-(\frac{b}{2a})^2+\frac{c}{a})\end{equation}

    \begin{equation*}a((x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{c}{a})\end{equation}

Simplify

    \begin{equation*}a((x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{4ac}{4a^2})\end{equation}

    \begin{equation*}a((x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a^2})\end{equation}

    \begin{equation*}a(x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a}\end{equation}

Now let’s solve

    \begin{equation*}a(x+\frac{b}{2a})^2+\frac{-b^2+4ac}{4a}=0\end{equation}

    \begin{equation*}a(x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})=\pm \sqrt{\frac{b^2-4ac}{4a^2}}\end{equation}

    \begin{equation*}(x+\frac{b}{2a})=\frac{\pm \sqrt{b^2-4ac}}{2a}\end{equation}

    \begin{equation*}x=-\frac{b}{2a}\frac{\pm \sqrt{b^2-4ac}}{2a}\end{equation}

Which is the quadratic equation formula.

Leave a Comment

Filed under Algebra, Quadratic, Quadratics, Solving, Solving, Solving Equations

Logistic Growth Worked Example

A brumby is a free-roaming wild horse found in large number in parts of Australia. The culling of brumbies was banned in the year 2000. At this time the estimated population of brumbies in
Kosciuszko National Park was 1600. Scientists have modelled the population, P(t), of brumbies in
Kosciuszko National Park t years since the ban, by

    \begin{equation*}P(t)=\frac{18000}{10.25e^{0.15t}+1}\end{equation}

(a) Use the model to determine how long it will take the brumbies to increase to a number that is triple the number when the ban came into effect.

(b) From this model, determine the estimated long run number of brumbies in Kosciuszko National Park.

It can be shown that the growth rate of the population of brumbies can be expressed as

    \begin{equation*}\frac{dP}{dt}=\frac{1}{r}P(k-P)\end{equation}

(c) Determine the values of the constants r and k.

(d) Determine the greatest growth rate for the population of brumbies.

ATAR 2024 Specialist Mathematics Question 13

(a) 1600\times 3=4800
4800=\frac{18000}{10.25e^{0.15t}+1}
t=8.8 years.

(b) \lim_{\limits_{t \to \infty}\frac{18000}{10.25e^{0.15t}+1}=18000

(c)k is the carrying capacity (long run number of Brumbies), therefore k=18000.
Remember,

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\Longleftrightarrow P=\frac{KP_0}{(k-P_0)e^{-rkt}+P_0}\end{equation}

We have \frac{1}{r} instead of r.

Therefore,

    \begin{equation*}0.15=\frac{1}{r}\times 18000\end{equation}

r=120000

(d) The greatest growth rate occurs when P=\frac{k}{2}=9000

    \begin{equation*}\frac{dP}{dt}=\frac{1}{r}P(k-P)\end{equation}

    \begin{equation*}\frac{dP}{dt}=\frac{1}{120000}(9000)(9000)\end{equation}

The greatest growth rate is 675 Brumbies per year.

1 Comment

Filed under Differential Equations, Logistic Growth, Year 12 Specialist Mathematics

Deriving the Logistic Growth Equation

The logistic differential equation

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

where r is the growth parameter and k is the carrying capacity.

And the maximum rate of increase happens when P=\frac{k}{2}

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

    \begin{equation*}\frac{dP}{P(k-P)}=r dt{\end{equation}

    \begin{equation*}\int \frac{dP}{P(k-P)}=\int r dt{\end{equation}

I am going to separate the denominator on the left hand side

\frac{1}{P(k-P)}=\frac{A}{P}+\frac{B}{k-P}
Hence,
\frac{1}{P(k-P)}=\frac{A(k-P)+BP}{P(k-P)}
1=A(k-P)+BP
When P=0,
1=Ak\Rightarrow A=\frac{1}{k}
When P=k,
1=BK\Rightarrow B=\frac{1}{k}

So our equation is,

    \begin{equation*}\int \frac{\frac{1}{k}}{P}+\frac{\frac{1}{k}}{k-P} dP=\int r dt\end{equation}

    \begin{equation*}\frac{1}{k}\int \frac{1}{P}+\frac{1}{k-P} dP=\int r dt\end{equation}

    \begin{equation*}\int \frac{1}{P}+\frac{1}{k-P} dP=\int kr dt\end{equation}

    \begin{equation*}ln\lvert{P}\rvert-ln\lvert{k-P}\rvert=krt+c\end{equation}

    \begin{equation*}ln\lvert{\frac{P}{k-P}\rvert=krt+c\end{equation}

    \begin{equation*}\frac{P}{k-P}=e^{krt+c}\end{equation}

    \begin{equation*}\frac{P}{k-P}=e^{krt}e^{c} \end{equation}

When t=0, P=P_0,

    \begin{equation*}\frac{P_0}{k-P_0}=e^{c} \end{equation}

The equation is now

    \begin{equation*}\frac{P}{k-P}=\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P=\frac{P_0}{k-P_0}e^{krt}(k-P)\end{equation}

    \begin{equation*}P=k\frac{P_0}{k-P_0}e^{krt}-P\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P+P\frac{P_0}{k-P_0}e^{krt}=k\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P(1+\frac{P_0}{k-P_0}e^{krt})=k\frac{P_0}{k-P_0}e^{krt}\end{equation}

    \begin{equation*}P=\frac{k\frac{P_0}{k-P_0}e^{krt}}{1+\frac{P_0}{k-P_0}e^{krt}}\end{equation}

    \begin{equation*}P=\frac{k\frac{P_0}{k-P_0}e^{krt}}{\frac{k-P_0+P_0e^{krt}}{k-P_0}}\end{equation}

    \begin{equation*}P=\frac{kP_0e^{rkt}}{k-P_0+P_0e^{rkt}}\end{equation}

Divide by e^{rkt}

    \begin{equation*}P=\frac{kP_0}{(k-P_0)e^{-rkt}+P_0}\end{equation}

    \begin{equation*}}\frac{dP}{dt}=rP(k-P)\Longleftrightarrow P=\frac{kP_0}{(k-P_0)e^{-rkt}+P_0}\end{equation}

Proving the Maximum Rate of Increase Happens When P=\frac{k}{2}

    \begin{equation*}\frac{dP}{dt}=rP(k-P)\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=r\frac{dP}{dt}(k-P)+rP(-\frac{dP}{dt})\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=\frac{dP}{dt}(rk-rP-rP)\end{equation}

    \begin{equation*}\frac{d^2P}{dt^2}=0\end{equation}

    \begin{equation*}\frac{dP}{dt}(rk-rP-rP)=0\end{equation}

    \begin{equation*}r\frac{dP}{dt}(k-2P)=0\end{equation}

    \begin{equation*}\frac{dP}{dt}(k-2P)=0\end{equation}

    \begin{equation*}rP(k-P)(k-2P)=0\end{equation}

Hence P=k or P=\frac{k}{2}

(1)   \begin{equation*}\frac{d^3P}{dt^3}=\frac{dP^2}{dt^2}(rk-2rP)+\frac{dP}{dt}(-2\frac{dP}{dt})\end{equation*}

Substitute P=k into equation 1

    \begin{equation*}\frac{d^3P}{dt^3}=rk(k-k)(rk-2rk)(rk-2rk)-2(rk(k-k))^2=0\end{equation}

Hence, not a maximum.

Substitute P=\frac{k}{2} into equation 1

    \begin{equation*}\frac{d^3P}{dt^3}=rk(k-\frac{k}{2})(rk-2r\frac{k}{2})(rk-2r\frac{k}{2})-2(rk(k-\frac{k}{2}))^2=0\end{equation}

    \begin{equation*}\frac{d^3P}{dt^3}=-2(rk^2-\frac{rk^2}{2})^2\end{equation}

    \begin{equation*}\frac{d^3P}{dt^3}=-2\frac{r^2k^4}{4}\end{equation}

-2\frac{r^2k^4}{4}\le 0 For all values of P, r and k.

Hence maximum when P=\frac{k}{2}

We will look at a worked example in the next post.

Leave a Comment

Filed under Differential Equations, Differentiation, Implicit, Logistic Growth, Optimisation, Product Rule, Uncategorized, Year 12 Specialist Mathematics

Intersecting Secant Theorem

CD is a tangent to the circle.

Prove c^2=a(a+b)

I am going to add two chords to the circle

Chord AD and BD are added

\angle{BDC}=\angle{CAD} (angles in alternate segments are congruent)

\angle{BCD}=\angle{DCA} (shared angle)

\therefore \Delta BDC\cong \Delta{DAC} (AA)

Hence

\frac{DC}{AC}=\frac{BC}{DC} (Corresponding sides in similar triangles)

\frac{c}{a+b}=\frac{a}{c}

\therefore c^2=a(a+b)

1 Comment

Filed under Circle Theorems, Geometry, Year 11 Specialist Mathematics

Circle Geometry Question 2

One of my Year 11 Specialist students had this question

Triangle ABC touches the given circle at Points P, Q, R and S only. The secant BW touches the circle at V and W.

Diagram not drawn to scale

(a) Determine the lengths of the line segments marked x, y and z, leaving your answers as exact values.

(b) If the length of the line segment QW is 4 units, determine the exact radius of the circle.

(a) We are going to use the Intersecting Secant Theorem – the tangent version

c^2=a\times(a+b)

Hence, we have

    \begin{equation*}30^2=25(25+x+6)\end{equation}

    \begin{equation*}900=25(31+x)\end{equation}

    \begin{equation*}x=5\end{equation}

Then we can use the intersecting chord theorem to find y.

    \begin{equation*}10\times y=6 \times x\end{equation}

    \begin{equation*}10y=30\end{equation}

    \begin{equation*}y=3\end{equation}

Back to the Intersecting Secant Theorem to find z

    \begin{equation*}z^2=4\times 17\end{equation}

    \begin{equation*}z=2\sqrt{17}\end{equation}

(b)


QW is part of a 3-4-5 triangle, therefore \angle{Q}=90^\circ

This is definitely the case of the diagram not being drawn to scale. If \angle{Q}=90^\circ, then the purple line must be the diameter.

We can use pythagoras to find the length of the diameter

    \begin{equation*}(2r)^2=13^2+4^2\end{equation}

    \begin{equation*}4r^2=185\end{equation}

    \begin{equation*}r=\frac{\sqrt{285}}{2}\end{equation}

The radius of the circle is \frac{\sqrt{285}}{2}

Leave a Comment

Filed under Circle Theorems, Geometry, Pythagoras, Year 11 Specialist Mathematics

Circle Geometry Question

In the above diagram O is the centre of the larger circle. A, B,D and E are points on the circumference of the larger circle. A, C, E and 0 are points on the circumference of the smaller circle. Show that \angle{CAB}=\angle{ABC}. AB, AC and BC are straight lines.

AO=OB (radii of the larger circle)

At a line from O to E (it is also a radius of the larger circle)

Let \angle{CAB}=\alpha.

ACEO is a cyclic quadrilateral.

Hence, \angle{CED}=180-\alpha (AECO is a cyclic quadrilateral)

As CB is a straight line \angle{OEB}=180-(180-\alpha)=\alpha.

\Delta OEB is an isosceles triangle.

Therefore, \angle{ABC}=\alpha

Therefore \angle{ABC}=\angle{CAB}

Leave a Comment

Filed under Circle Theorems, Finding an angle, Geometry, Year 11 Specialist Mathematics

Binomial Expansion Theorem

My Year 11 Mathematics Methods students are working on the Binomial Expansion Theorem.

But before we get onto that, remember Pascal’s triangle

First 8 rows of Pascal’s triangle

Now we can use combinations to find the numbers in each row. For example, 1 4 6 4 1 is \begin{pmatrix}4\\0\end{pmatrix}=1, \begin{pmatrix}4\\1\end{pmatrix}=4, \begin{pmatrix}4\\2\end{pmatrix}=6,  \begin{pmatrix}4\\3\end{pmatrix}=4, \begin{pmatrix}4\\4\end{pmatrix}=1

ExpressionExpansionCo-efficients
(x+y)^2x^2+2xy+y^21, 2, 1
(x+y)^3x^3+3x^2y+3xy^2+y^31, 3, 3, 1
(x+y)^4x^4+4x^3y+6x^2y^2+4xy^3+y^41, 4, 6, 4, 1

As you can see, the coefficients are the row of pascal’s triangle corresponding to the power. So (x+y)^6 would have co-efficients from the sixth row of the table 1, 6, 15, 20, 15, 6, 1.

To generalise

(x+y)^n=\begin{pmatrix}n\\0\end{pmatrix}x^ny^0+\begin{pmatrix}n\\1\end{pmatrix}x^{n-1}y^1+\begin{pmatrix}n\\2\end{pmatrix}x^{n-2}y^2+ ...+\begin{pmatrix}n\\n-1\end{pmatrix}x^1{y^{n-1}+\begin{pmatrix}n\\n\end{pmatrix}x^0y^n

Which we can condense to

(x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i

Worked Examples

(1) Expand (2x-3)^4

(2x-3)^4=\begin{pmatrix}4\\0\end{pmatrix}(2x)^4(-3)^0+\begin{pmatrix}4\\1\end{pmatrix}(2x)^3(-3)^1+\begin{pmatrix}4\\2\end{pmatrix}(2x)^2(-3)^2+\begin{pmatrix}4\\3\end{pmatrix}(2x)^1(-3)^3+\begin{pmatrix}4\\4\end{pmatrix}(2x)^0(-3)^4
(2x-3)^4=16x^4-96x^3+216x^2-216x+81

(2) Find the co-efficient of the x^3 term in the expansion of (2-5x)^5.

Remember (x+y)^n=\Sigma_{i=0}^n \begin{pmatrix}n\\i\end{pmatrix}x^{n-i}y^i, the x^3 is when i=3
\begin{pmatrix}5\\3\end{pmatrix}(2)^2(-5)^3=10\times 2\times -125=-5000

(3) Find the constant term in the expansion of (x^2+\frac{3}{x^4})^6

We need to find the term where the x‘s cancel out. Each term is \begin{pmatrix}6\\i\end{pmatrix}(x^2)^{6-i}(\frac{3}{x^4})^i.
\begin{pmatrix}6\\i\end{pmatrix}(x^{12-2i})(3^ix^{-4i}).
We need 12-2i-4i=0, hence i=2
Therefore, the co-efficient is \begin{pmatrix}6\\2\end{pmatrix}\times3^2=135

Leave a Comment

Filed under Algebra, Binomial Expansion Theorem, Counting Techniques, Year 11 Mathematical Methods

Derangements

From Wikipedia

In combinatorial mathematics, a derangement is a permutation of the elements of a set in which no element appears in its original position.

For example, if we have the set {A, B, C}, there are 6 permutations

ABC, ACB, BAC, BCA, CAB, CBA

But only 2 of them are derangements – BCA and CAB

I did a practical question on this here. In that question I used a tree diagram, but there must be a way to determine the number of derangements given n elements.

We know 3 elements has 2 derangements, what about 4 elements? We know there are 4!=24 permutations

ABCDBACDCABDDABC
ACBDBADCCADBDACB
ACDBBCADCBADDBAC
ABDCBCDACBDADBCA
ADBCBDACCDABDCAB
ADCBBDCACDBADCBA

I have highlighted the derangements. when n=4 there are 9 derangements.

Let’s try to generalise.

  • In how many ways can one element be in its original position?
    \begin{pmatrix}4\\1\end{pmatrix} \times 3!=24
    Choose one element from the 4 to be in its original position, and then arrange the remaining three elements.

    So far, we have D_3=4!-\begin{pmatrix}4\\1\end{pmatrix} \times 3!=0

    Clearly we are counting some arrangements multiple times, for example ABDC has A and B in the correct position, so we need to add all of the arrangements with 2 elements in their original position.
  • In how many ways can two elements be in their original position?
    \begin{pmatrix}4\\2\end{pmatrix} \times 2!=12

    So now we have, D_3=4!-\begin{pmatrix}4\\1\end{pmatrix} \times 3!+\begin{pmatrix}4\\2\end{pmatrix} \times 2!=12

    But once again we have counted some arrangements multiple times, so we need to subtract all of the arrangements with 3 elements in their original position.
  • In how many ways can three elements be in their original position?
    \begin{pmatrix}4\\3\end{pmatrix} \times 1!=4

    So now we have, D_3=4!-\begin{pmatrix}4\\1\end{pmatrix} \times 3!+\begin{pmatrix}4\\2\end{pmatrix} \times 2!-\begin{pmatrix}4\\3\end{pmatrix} \times 1!=8

    We now need to add all of the arrangements with 4 elements in their original position.
  • In how many ways can four elements be in their original position?
    \begin{pmatrix}4\\4\end{pmatrix} \times 0!=1

    So now we have, D_3=4!-\begin{pmatrix}4\\1\end{pmatrix} \times 3!+\begin{pmatrix}4\\2\end{pmatrix} \times 2!-\begin{pmatrix}4\\3\end{pmatrix} \times 1!+\begin{pmatrix}4\\4\end{pmatrix} \times 0!=9

Hence,

D_n=\begin{pmatrix}n\\0\end{pmatrix}\times n!-\begin{pmatrix}n\\1\end{pmatrix}\times (n-1)!+\begin{pmatrix}n\\2\end{pmatrix}\times (n-2)!-... \mp \begin{pmatrix}n\\n\end{pmatrix}\times 0!

Which we can simplify to

D_n=\Sigma_{i=0}^{n}(-1)^n\begin{pmatrix}n\\i\end{pmatrix}\times(n-i)!

Leave a Comment

Filed under Counting Techniques, Interesting Mathematics, Year 11 Specialist Mathematics

Differentiating f(x)=e^x

We are going to differentiate f(x)=e^x from first principals.

Remember the definition of a derivative is

(1)   \begin{equation*}f'(x)=\lim_{\limits{h\to 0}}\frac{f(x+h)-f(x)}{h}\end{equation*}

If f(x)=e^x, then

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^{x+h}-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x\times e^h-e^x}{h}\end{equation}

    \begin{equation*}f'(x)=\lim_{\limits{h \to 0}}\frac{e^x(e^h-1)}{h}\end{equation}

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

Let’s think about \lim_{\limits{h \to 0}}\frac{e^h-1}{h}

Remember e is defined as \lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

(2)   \begin{equation*}\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation*}

Let y=e^h-1, as h \to 0, e^h-1 \to 1-1=0 hence y \to 0

If y=e^h-1, then h=ln(y+1)

(3)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{y}{ln(y+1)}\end{equation*}

We are going to rewrite the equation 3 as

(4)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{\frac{1}{ln(y+1)}}{y}\end{equation*}

And then we can write equation 4 as

(5)   \begin{equation*}{\lim_{\limits{y \to 0}}{\frac{1}{\frac{1}{y}ln(y+1)}\end{equation*}

Using log laws we can write equation 5 as

(6)   \begin{equation*}\lim_{\limits{y \to 0}}\frac{1}{ln(y+1)^{\frac{1}{y}}}\end{equation*}

Let y=\frac{1}{n}

As y \to 0, n \to \infty

equation 6 becomes

(7)   \begin{equation*}\lim_{\limits{n \to \infty}}\frac{1}{ln(\frac{1}{n}+1)^n}\end{equation*}

We can move the limit to inside the natural log

(8)   \begin{equation*}\frac{1}{ln(\lim_{\limits{n \to \infty}}(\frac{1}{n}+1)^n)}\end{equation*}

And we know from the definition of e that e=\lim_{\limits{n \to \infty}}(1+\frac{1}{n})^n

Hence, equation 8 is

(9)   \begin{equation*}\frac{1}{ln(e)}=1\end{equation*}

Back to our derivative

    \begin{equation*}f'(x)=e^x\lim_{\limits{h \to 0}}{\frac{e^h-1}{h}\end{equation}

We know that \lim_{\limits{h \to 0}}{\frac{e^h-1}{h}=1 hence

    \begin{equation*}f'(x)=e^x\end{equation}

Leave a Comment

Filed under Calculus, Differentiation, Year 12 Mathematical Methods

Finding a Recursive Rule for a Sequence (Year 12 Mathematics Applications)

How do we go about finding the rule for a first order linear recurrence relation?

Something like

    \begin{equation*}5, 7, 11, 19, ...\end{equation}

There isn’t a common difference (arithmetic sequence) or a common ratio (geometric sequence). Sometimes you can just see the rule, but an algorithm will be handy.

Let’s say our relationship is

(1)   \begin{equation*}T_{n+1}=bT_n+c, T_1=a\end{equation*}

Referring back to our sequence 5, 7, 11, 19, ..., we know

(2)   \begin{equation*}7=b\times5+c\end{equation*}

and

(3)   \begin{equation*}11=b\times7+c\end{equation*}

We can solve equation 2 and 3 simultaneously

equation 2- equation 3

    \begin{equation*}-4=-2b\end{equation}

Hence b=2

Substitute b=2 into equation 2

    \begin{equation*}7=2\times 5+c\end{equation}

    \begin{equation*}7=10+c\end{equation}

Hence c=-3

    \begin{equation*}T_{n+1}=2T_n-3, T_1=5\end{equation}

Let’s try to generalise

If T_{n+1}=bT_n+c, T_1=a, then

(4)   \begin{equation*}T_2=bT_1+c\end{equation*}

and

(5)   \begin{equation*}T_3=bT_2+c\end{equation*}

Equation 5 - equation 4

    \begin{equation*}T_3-T_2=(T_2-T_1)b\end{equation}

    \begin{equation*} b=\frac{T_3-T_2}{T_2-T_1}\end{equation}

Hence, b=\frac{T_{n+2}-T_{n+1}}{T_{n+1}-T_n}

Once you know b, substitute into either equation to find C.

Example

Find the recursive rule for the following

-8, -12, -20, -36, ...

    \begin{equation*}b=\frac{T_{n+2}-T_{n+1}}{T_{n+1}-T_n}=\frac{-20-(-12)}{-12-(-8)}=\frac{-8}{-4}=2\end{equation}

    \begin{equation*}-12=2\times-8+c\end{equation}

    \begin{equation*}-12=-16+c\end{equation}

Hence c=4 and T_{n+1}=2T_n+4, T_1=-8

It is also possible to find the rule using a Classpad (if it’s in the calculator section} by using an e-activity.

Leave a Comment

Filed under Sequences, Sequences, Year 12 Mathematics Applications