Synthetic Division (for factorising and/or solving polynomials)

I use synthetic division to factorise polynomials with a degree greater than 2. For example, f(x)=x^3+2x^2-5x-6

It works best with monic polynomials but can be adapted to non-monic ones (see example below).

The only problem is that you need to find a root to start.

Try the factors of -6 i.e. (-1, 1, 2, -2, 3, -3, 6, -6)

f(-1)=(-1)^3+2(-1)^2-5(-1)-6=0

Hence, x=-1 is a root and (x+1) is a factor of the polynomial.

Set up as follows

Bring the first number down

Multiply by the root and place under the second co-efficient

Add down

Repeat the process

The numbers at the bottom (1, 1, -6) are the coefficients of the polynomial factor.

We now know x^3+2x^2-5x-6=(x+1)(x^2+x-6).

We can factorise the quadratic in the usual way.

x^2+x-6=(x+3)(x-2)

Hence x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

Let’s try a non-monic example

Factorise 6x^4+39x^3+91x^2+89x+30

I know -2 is a root. Otherwise I would try the factors of 30.

Use synthetic division

Because this was non-monic we need to divide our new co-efficients (6, 27, 37, 15) by 6 (the co-efficient of the x^4 term)

x^3+\frac{9}{2}x^2+\frac{37}{6}+\frac{5}{2}

We now need to go again. I know that \frac{-3}{2} is a root and (2x+3) is a factor.

Our quadratic factor is x^2+3x+5/3, which is 3x^2+9x+5.

The quadratic factor doesn’t have integer factors so,

6x^4+39x^3+91x^2+89x+30=(x+2)(2x+3)(3x^2+9x+5)

I think this is much quicker than polynomial long division.

Leave a Comment

Filed under Algebra, Factorising, Factorising, Fractions, Polynomials, Quadratic, Simplifying fractions, Solving Equations

Trigonometry Question

I don’t know where I found this question, but it does require algebra and problem solving (as well as right trig and Pythagoras)

From a point A, a lighthouse is on a bearing of 026^\circT and the top of the light house is at an angle of elevation of 20.25^\circ. From a point B, the lighthouse is on a bearing of 296^\cricT and the top of the lighthouse is at angle of elevation of 10.2^\circ. If A and B are 500 metres apart, find the height of the lighthouse.

Let’s draw a diagram.

Let the height of the lighthouse be h

We can find the angle between A, the lighthouse, and B by using the base triangle

The red line from L is parallel to the two north lines. Hence \theta=26^\circ+64^\circ=90^\circ (Alternate angles in parallel lines are congruent)

It’s a right triangle so we know

(1)   \begin{equation*}500^2=(AL)^2+(BL)^2\end{equation*}

We are going to use the other two triangles to find AL and BL


tan(20.25)=\frac{h}{AL}
AL=\frac{h}{tan(20.25)}

tan(10.2)=\frac{h}{BL}
BL=\frac{h}{tan(10.2)}

Substitute AL and BL into equation 1

    \begin{equation*}500^2=(\frac{h}{tan(20.25)})^2+(\frac{h}{tan(10.2)})^2\end{equation}

Solve for h.

    \begin{equation*}500^2=7.35h^2+30.89h^2=38.24h^2\end{equation}

    \begin{equation*}h^2=6538.3\end{equation}

    \begin{equation*}h=80.9m\end{equation}

Leave a Comment

Filed under Algebra, Bearings, Pythagoras, Right Trigonometry, Solving Equations, Trigonometry

Converting recurring (non-terminating) decimals to fractions

The easiest approach is to jump right in with some examples.

Example 1

Convert 0.\overline{5} to a fraction.

Let x=0.\overline{5}

(1)   \begin{equation*}x=0.\overline{5}\end{equation*}

(2)   \begin{equation*}10x=5.\overline{5}\end{equation*}

Subtract equation 1 from equation 2

    \begin{equation*}9x=5\end{equation}

Hence x=\frac{5}{9} so 0.\overline{5}=\frac{5}{9}

Example 2

Convert 0.\overline{12} to a fraction.

Let x=0.\overline{12}

(3)   \begin{equation*}x=0.\overline{12}\end{equation*}

(4)   \begin{equation*}100x=12.\overline{12}\end{equation*}

Subtract equation 3 from equation 4.

    \begin{equation*}99x=12\end{equation}

    \begin{equation*}x=\frac{12}{99}=\frac{4}{33}\end{equation}

Example 3

Convert 0.1\overline{23} to a fraction

Let x=0.1\overline{23}

(5)   \begin{equation*}x=0.1\overline{23}\end{equation*}

(6)   \begin{equation*}10x=1.\overline{23}\end{equation*}

(7)   \begin{equation*}1000x=123.\overline{23}\end{equation*}

Subtract equation 6 from equation 7

    \begin{equation*}990x=122\end{equation}

    \begin{equation*}x=\frac{122}{990}=\frac{61}{495}\end{equation}

Our aim is to manipulate the recurring decimal to create two numbers each which have only the repeated digits after the decimal point.

One more example.

Example 4

Convert 3.4\overline{56} to a fraction

Let x=3.4\overline{56}

If I multiply by 10, then I will have 34.\overline{56} – only repeated digits after the decimal point.

If I multiply by 1000, then I will have 3456.\overline{56}– only repeated digits after the decimal point.

So I get,

    \begin{equation*}990x=3422\end{equation}

    \begin{equation*}x=\frac{3422}{990}=3\frac{226}{495}\end{equation}

You can also use your Casio classpad to do the conversion. Although I think it is easier just to do it yourself.

Let’s think about example 4,

3.4\overline{56}=3.4+\frac{56}{1000}+\frac{56}{100000}+\frac{56}{10000000}+...

Which is

3.4+\frac{56}{1000\times 100^0}+\frac{56}{1000\times100^1}+\frac{56}{1000\times 100^2}...

3.4+\Sigma_{x=0}^\infty(\frac{56}{1000\times 100^x})

Leave a Comment

Filed under Arithmetic, Decimals, Fractions, Year 11 Specialist Mathematics

Square Root Puzzle

Is it possible to find three numbers, a, b, c, none of which is zero or a perfect square, such that
\sqrt{a}+\sqrt{b}=\sqrt{c}

Can You Solve These – David Wells

As a, b and c can’t be perfect squares, let a=d\times e^2, b=f\times g^2 and c=h\times k^2 where d, e, f, g, h and k are real numbers.

Hence \sqrt{a}=e\sqrt{d}, \sqrt{b}=g\sqrt{f} and \sqrt{c}=k\sqrt{h}.

    \begin{equation*}\sqrt{a}+\sqrt{b}=\sqrt{c}\end{equation}

    \begin{equation*}e\sqrt{d}+g\sqrt{f}=k\sqrt{h}\end{equation}

For the above equation to be possible d, f and h must simplify to the same surd. Because we are looking for one set of numbers, let d=f=h.

    \begin{equation*}e\sqrt{d}+g\sqrt{d}=k\sqrt{d}\end{equation}

    \begin{equation*}e+g=k\end{equation}

Let’s think of some numbers that might work…

1+2=3 or 2+3=5, etc.

Let’s try e=1, g=2, and k=3

We now have a=d, b=4d, and c=9d

As a can’t be a square number, d can’t be a square number.

Try d=2

    \begin{equation*}\sqrt{2}+\sqrt{8}=\sqrt{18}\end{equation}

LHS=\sqrt{2}+2\sqrt{2}

LHS=3\sqrt{2}

LHS=\sqrt{9\times 2}

LHS=\sqrt{18}

LHS=RHS

One set of possible numbers are 2, 8,and 18.

Leave a Comment

Filed under Algebra, Interesting Mathematics, Puzzles

Closest Approach (Shortest Distance) e-activity (Casio Classpad)

At 1pm, object H travelling with constant velocity \begin{pmatrix}200\\10\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}-90\\-100\end{pmatrix}km. At 2pm object J travelling with constant velocity \begin{pmatrix}100\\-100\end{pmatrix}km/h is sighted at the point with position vector \begin{pmatrix}20\\-120\end{pmatrix}km. Determine the minimum distance between H and J and when this occurs.

OT Lee Mathematics Specialist Year 11 Unit 1 and 2 Exercise 10.1 Question 6.

(1)   \begin{equation*}\mathbf{r_H}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}\end{equation*}

(2)   \begin{equation*}\mathbf{r_J}=\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix}\end{equation*}

\begin{pmatrix}-80\\-20\end{pmatrix} is the position vector of J at 1pm.

Find the relative displacement of H to J

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\mathbf{r_H}-\mathbf{r_J}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-90\\-100\end{pmatrix}+t\begin{pmatrix}200\\10\end{pmatrix}-(\begin{pmatrix}-80\\-20\end{pmatrix}+t\begin{pmatrix}100\\-100\end{pmatrix})\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

Find the relative velocity of H to J

    \begin{equation*}\mathbf{_H}\mathbf{v_J}=\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

The relative displacement is perpendicular to the relative velocity at the closest approach.

That is

(3)   \begin{equation*}\mathbf{_H}\mathbf{r_J}\cdot\mathbf{_H}\mathbf{v_J}=0\end{equation*}

    \begin{equation*}(\begin{pmatrix}-10\\-80\end{pmatrix}+t\begin{pmatrix}100\\110\end{pmatrix})\cdot(\begin{pmatrix}100\\110\end{pmatrix})=0\end{equation}

    \begin{equation*}(-10+100t)(100)+(-80+110t)(110)=0\end{equation}

    \begin{equation*}-1000+10 000t-8800+12100t=0\end{equation}

    \begin{equation*}22100t=9800\end{equation}

    \begin{equation*}t=\frac{98}{221}\end{equation}

Substitute t=\frac{98}{221} into the relative displacement and find the magnitude.

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}-10\\-80\end{pmatrix}+\frac{98}{221}\begin{pmatrix}100\\110\end{pmatrix}\end{equation}

    \begin{equation*}\mathbf{_H}\mathbf{r_J}=\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\end{equation}

    \begin{equation*}\|\begin{pmatrix}34\frac{76}{221}\\-31\frac{49}{221}\end{pmatrix}\|=46.4\end{equation}

The closest objects H and J get to each other is 46.4km at 1:27pm.

I have made an e-activity for this.

Leave a Comment

Filed under Classpad Skills, Closest Approach, Vectors, Year 11 Mathematical Methods

A Counting Question

How many three digit numbers can you form from the digits 1, 2, 3, 4 and 5 if

(a) the digits must occur in increasing order?

(b) adjacent digits differ by 2?

Cambridge Year 11 Specialist Mathematics Skill Sheet 1A

(a) There are 5\times 4\times 3=60 permutations of three digits from the five digits, but how many of those are in the right order?

Each set of 3 digits has 6 arrangements (3\times 2\times 1=6).

For example, if the set is {1, 2, 3}, then the possible arrangements are:

123, 132, 213, 231, 312, and 321.

Only one of those arrangements is in numerical order.

Hence what we want is \begin{pmatrix}5\\3\end{pmatrix}=10

(b) I think this one is more about creating a list. I shall start with 1

135, 531, 131, 242, 353, 424, 535, 315

There are 8 possibilities.

Leave a Comment

Filed under Counting Techniques, Year 11 Specialist Mathematics

Circle Geometry Problem

In the diagram, points A, B, C, D and Q lie on a circle centre O, radius 6 cm and diameter BQ, \angle{ABQ}=50^\circ, AB is parallel to DO and point P lies on diameter BQ such that OP=DP=4cm.

(a) Find \angle{BCD}

(b) Determine the length of PC.

\angle{BOD}=180^\circ-50^\circ=130^\circ (Co-interior angles in parallel lines are supplementary.)

\angle{BCD}=\frac{1}{2}\times 130=65^\circ (Angles subtended by the same arc. The angle at the centre is twice the angle at the circumference.)

\angle{BCD}=65^\circ.

Let PC=x

From the intersecting chord theorem

    \begin{equation*}4\times x=2\times 10\end{equation}

    \begin{equation*}4x=20\end{equation}

    \begin{equation*}x=5\end{equation}

PC=5cm


A chord AB of a circle O is extended to C. The straight line bisecting \angle{OAB} meets the circle at E. Let \angle{BAE}=x. Prove that EB bisects \angle{OBC}.

\angle{BAO}=2x (AE bisects \angle {BAO})

\Delta AOB is isosceles (AO=B0 radii of the circle)

\angle{ABO}=2x (Equal angles in isosceles triangle)

Therefore \angle {AOB}=180^\circ-4x (angle sum of a triangle)

\angle {BEA}=90^\circ-2x (angle at the circumference is half angle at the centre)

\angle{ABE}=180^\circ-x-(90^\circ-2x)=90^\circ+x (angle sum of a triangle)

\angle{CBE}=180^\circ-(90^\circ+x)=90^\circ-x (angles on a straight line)

\angle{OBE}=90^\circ+x-2x=90^\circ-x

\angle{OBE}=\angle{CBE}

Hence, BE bisects \angle{OBC}

Leave a Comment

Filed under Circle Theorems, Geometry, Uncategorized, Year 11 Specialist Mathematics

Perfect Squares

Find all of the positive integers that make the following expression a perfect square.

(1)   \begin{equation*}(x-10)(x+14)\end{equation*}

Let

    \begin{equation*}(x-10)(x+14)=n^2\end{equation}

where n is an integer.

Expand and simplify

    \begin{equation*}x^2+4x-140=n^2\end{equation}

    \begin{equation*}x^2-4x-n^2=140\end{equation}

Complete the square

    \begin{equation*}(x+2)^2-4-n^2=140\end{equation}

    \begin{equation*}(x+2)^2-n^2=144\end{equation}

Factorise (using difference of perfect squares)

    \begin{equation*}(x+2-n)(x+2+n)=144\end{equation}

Find all of the factors of 144

(1,144), (2, 72), (3, 48), (4, 36), (6, 24), (8, 18), (9, 16), (12, 12)

First pair,

    \begin{equation*}x+2-n=1 \tag {1} \end{equation}

    \begin{equation*}x+2+n=144 \tag {2} \end{equation}

2x=141

x must be an integer.

I then used a spreadsheet

Solved for the x values.

Hence the integers that make (x-10)(x+14) are perfect square are, 10, 11, 13, 18, and 35.

Let’s try another one,

(x-6)(x+14)

(2)   \begin{equation*}(x-6)(x+14)=n^2\end{equation*}

    \begin{equation*}(x^2+8x-84=n^2\end{equation}

    \begin{equation*}(x+4)^2-n^2=100\end{equation}

    \begin{equation*}(x+4-n)(x+4+n)=100\end{equation}

Factors of 100,

(1, 100), (2, 50), (4, 25), (5, 20), (10, 10)

So the possible integers are 6 and 22.

Leave a Comment

Filed under Algebra, Arithmetic, Divisibility, Interesting Mathematics, Puzzles, Quadratic, Solving Equations

Combinations Proof

Prove \begin{pmatrix}n+1\\r\end{pmatrix}=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

Let’s start with the right hand side.

RHS=\begin{pmatrix}n\\r-1\end{pmatrix}+\begin{pmatrix}n\\r\end{pmatrix}

RHS=\frac{n!}{(n-(r-1))!(r-1)!}+\frac{n!}{(n-r)!r!}

Simplify

RHS=\frac{n!}{(n+1-r)!}+\frac{n!}{(n-r)!r!}

There is a common denominator of (n+1-r)!r!

RHS=\frac{n!}{(n+1-r)!}\times \frac{r}{r}+\frac{n!}{(n-r)!r!}\times \frac{n+1-r}{n+1-r}

RHS=\frac{n!r+n!(n+1-r)}{(n+1-r)r!}

RHS=\frac{n!r+(n+1)n!-n!r}{(n+1-r)!r!}

RHS=\frac{(n+1)!}{(n+1-r)!r!}

RHS=\begin{pmatrix}n+1\\r\end{pmatrix}

RHS=LHS

We know this intuitively from Pascal’s triangle

Where each entry is the sum of the two entries above it – for example,

6+4=10

Remember, Pascal’s triangle can be written as combinations,

so \begin{pmatrix}5\\3\end{pmatrix}=\begin{pmatrix}4\\2\end{pmatrix}+\begin{pmatrix}4\\3\end{pmatrix}

Leave a Comment

Filed under Algebra, Counting Techniques, Year 11 Mathematical Methods

Geometry Puzzle

Another puzzle from this book

Two ladders are propped up vertically in a narrow passageway between two vertical buildings. The ends of the ladders are 8 metres and 4 metres above the pavement.
Find the height above the ground, T,

\Delta ABC \sim \Delta TEC and \Delta DCB \sim  \Delta TEB (Angle Angle Similarity)

Hence,

(1)   \begin{equation*}\frac{h}{8}=\frac{x}{x+y}\end{equation*}

(2)   \begin{equation*}\frac{h}{4}=\frac{y}{x+y}\end{equation*}

From equation 1 h=\frac{8x}{x+y} and from 2 h=\frac{4y}{x+y}

Hence, \frac{8x}{x+y}=\frac{4y}{x+y}

Therefore, 8x=4y and y=2x

From equation 1

    \begin{equation*}h=\frac{8x}{3x}=\frac{8}{3}\end{equation}

Hence T is 2 \frac{2}{3}m above the ground.

Leave a Comment

Filed under Geometry, Puzzles, Similarity, Simplifying fractions, Solving Equations